SAGA with Arbitrary Sampling
Xun Qian · Zheng Qu · Peter Richtarik

Tue Jun 11th 06:30 -- 09:00 PM @ Pacific Ballroom #199

We study the problem of minimizing the average of a very large number of smooth functions, which is of key importance in training supervised learning models. One of the most celebrated methods in this context is the SAGA algorithm of Defazio et al. (2014). Despite years of research on the topic, a general-purpose version of SAGA---one that would include arbitrary importance sampling and minibatching schemes---does not exist. We remedy this situation and propose a general and flexible variant of SAGA following the arbitrary sampling paradigm. We perform an iteration complexity analysis of the method, largely possible due to the construction of new stochastic Lyapunov functions. We establish linear convergence rates in the smooth and strongly convex regime, and under certain error bound conditions also in a regime without strong convexity. Our rates match those of the primal-dual method Quartz (Qu et al., 2015) for which an arbitrary sampling analysis is available, which makes a significant step towards closing the gap in our understanding of complexity of primal and dual methods for finite sum problems. Finally, we show through experiments that specific variants of our general SAGA method can perform better in practice than other competing methods.

Author Information

Xun Qian (KAUST)
Zheng Qu (The University of Hong Kong)
Peter Richtarik (KAUST)

Peter Richtarik is an Associate Professor of Computer Science and Mathematics at KAUST and an Associate Professor of Mathematics at the University of Edinburgh. He is an EPSRC Fellow in Mathematical Sciences, Fellow of the Alan Turing Institute, and is affiliated with the Visual Computing Center and the Extreme Computing Research Center at KAUST. Dr. Richtarik received his PhD from Cornell University in 2007, and then worked as a Postdoctoral Fellow in Louvain, Belgium, before joining Edinburgh in 2009, and KAUST in 2017. Dr. Richtarik's research interests lie at the intersection of mathematics, computer science, machine learning, optimization, numerical linear algebra, high performance computing and applied probability. Through his recent work on randomized decomposition algorithms (such as randomized coordinate descent methods, stochastic gradient descent methods and their numerous extensions, improvements and variants), he has contributed to the foundations of the emerging field of big data optimization, randomized numerical linear algebra, and stochastic methods for empirical risk minimization. Several of his papers attracted international awards, including the SIAM SIGEST Best Paper Award, the IMA Leslie Fox Prize (2nd prize, twice), and the INFORMS Computing Society Best Student Paper Award (sole runner up). He is the founder and organizer of the Optimization and Big Data workshop series.‚Äč

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors