Timezone: »
Why are classifiers in high dimension vulnerable to “adversarial” perturbations? We show that it is likely not due to information theoretic limitations, but rather it could be due to computational constraints. First we prove that, for a broad set of classification tasks, the mere existence of a robust classifier implies that it can be found by a possibly exponential-time algorithm with relatively few training examples. Then we give two particular classification tasks where learning a robust classifier is computationally intractable. More precisely we construct two binary classifications task in high dimensional space which are (i) information theoretically easy to learn robustly for large perturbations, (ii) efficiently learnable (non-robustly) by a simple linear separator, (iii) yet are not efficiently robustly learnable, even for small perturbations. Specifically, for the first task hardness holds for any efficient algorithm in the statistical query (SQ) model, while for the second task we rule out any efficient algorithm under a cryptographic assumption. These examples give an exponential separation between classical learning and robust learning in the statistical query model or under a cryptographic assumption. It suggests that adversarial examples may be an unavoidable byproduct of computational limitations of learning algorithms.
Author Information
Sebastien Bubeck (Microsoft Research)
Yin Tat Lee (UW)
Eric Price (UT-Austin)
Ilya Razenshteyn (Microsoft Research Redmond)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Adversarial examples from computational constraints »
Tue. Jun 11th 06:40 -- 07:00 PM Room Grand Ballroom
More from the Same Authors
-
2021 : Ranking Architectures by Feature Extraction Capabilities »
Debadeepta Dey · Shital Shah · Sebastien Bubeck -
2021 : A Universal Law of Robustness via Isoperimetry »
Sebastien Bubeck · Mark Sellke -
2023 Poster: High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors »
Shivam Gupta · Jasper Lee · Eric Price -
2022 Poster: Hardness and Algorithms for Robust and Sparse Optimization »
Eric Price · Sandeep Silwal · Samson Zhou -
2022 Spotlight: Hardness and Algorithms for Robust and Sparse Optimization »
Eric Price · Sandeep Silwal · Samson Zhou -
2022 Poster: Data Augmentation as Feature Manipulation »
Ruoqi Shen · Sebastien Bubeck · Suriya Gunasekar -
2022 Spotlight: Data Augmentation as Feature Manipulation »
Ruoqi Shen · Sebastien Bubeck · Suriya Gunasekar -
2022 Poster: Linear Bandit Algorithms with Sublinear Time Complexity »
Shuo Yang · Tongzheng Ren · Sanjay Shakkottai · Eric Price · Inderjit Dhillon · Sujay Sanghavi -
2022 Spotlight: Linear Bandit Algorithms with Sublinear Time Complexity »
Shuo Yang · Tongzheng Ren · Sanjay Shakkottai · Eric Price · Inderjit Dhillon · Sujay Sanghavi -
2021 : A Universal Law of Robustness via Isoperimetry »
Sebastien Bubeck · Mark Sellke -
2021 Poster: Fairness for Image Generation with Uncertain Sensitive Attributes »
Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price -
2021 Spotlight: Fairness for Image Generation with Uncertain Sensitive Attributes »
Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price -
2021 Poster: Instance-Optimal Compressed Sensing via Posterior Sampling »
Ajil Jalal · Sushrut Karmalkar · Alexandros Dimakis · Eric Price -
2021 Spotlight: Instance-Optimal Compressed Sensing via Posterior Sampling »
Ajil Jalal · Sushrut Karmalkar · Alexandros Dimakis · Eric Price -
2020 Poster: On the Power of Compressed Sensing with Generative Models »
Akshay Kamath · Eric Price · Sushrut Karmalkar -
2020 Poster: Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization »
Hadrien Hendrikx · Lin Xiao · Sebastien Bubeck · Francis Bach · Laurent Massoulié -
2020 Poster: Online Learning for Active Cache Synchronization »
Andrey Kolobov · Sebastien Bubeck · Julian Zimmert -
2020 Poster: Scalable Nearest Neighbor Search for Optimal Transport »
Arturs Backurs · Yihe Dong · Piotr Indyk · Ilya Razenshteyn · Tal Wagner -
2018 Poster: Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits »
Zeyuan Allen-Zhu · Sebastien Bubeck · Yuanzhi Li -
2018 Oral: Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits »
Zeyuan Allen-Zhu · Sebastien Bubeck · Yuanzhi Li -
2017 Poster: Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Yin Tat Lee · Laurent Massoulié -
2017 Talk: Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks »
Kevin Scaman · Francis Bach · Sebastien Bubeck · Yin Tat Lee · Laurent Massoulié -
2017 Poster: Compressed Sensing using Generative Models »
Ashish Bora · Ajil Jalal · Eric Price · Alexandros Dimakis -
2017 Talk: Compressed Sensing using Generative Models »
Ashish Bora · Ajil Jalal · Eric Price · Alexandros Dimakis