Timezone: »
We study the problem of meta-learning through the lens of online convex optimization, developing a meta-algorithm bridging the gap between popular gradient-based meta-learning and classical regularization-based multi-task transfer methods. Our method is the first to simultaneously satisfy good sample efficiency guarantees in the convex setting, with generalization bounds that improve with task-similarity, while also being computationally scalable to modern deep learning architectures and the many-task setting. Despite its simplicity, the algorithm matches, up to a constant factor, a lower bound on the performance of any such parameter-transfer method under natural task similarity assumptions. We use experiments in both convex and deep learning settings to verify and demonstrate the applicability of our theory.
Author Information
Nina Balcan (Carnegie Mellon University)

Maria-Florina Balcan is an Associate Professor in the School of Computer Science at Carnegie Mellon University. Her main research interests are machine learning and theoretical computer science. Her honors include the CMU SCS Distinguished Dissertation Award, an NSF CAREER Award, a Microsoft Faculty Research Fellowship, a Sloan Research Fellowship, and several paper awards. She has served as a Program Committee Co-chair for COLT 2014, a Program Committee Co-chair for ICML 2016, and a board member of the International Machine Learning Society.
Mikhail Khodak (CMU)
Ameet Talwalkar (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Provable Guarantees for Gradient-Based Meta-Learning »
Wed. Jun 12th 09:30 -- 09:35 PM Room Room 201
More from the Same Authors
-
2021 : Interpretable Machine Learning: Moving From Mythos to Diagnostics »
Valerie Chen · Jeffrey Li · Joon Kim · Gregory Plumb · Ameet Talwalkar -
2022 : Meta-Learning Adversarial Bandits »
Nina Balcan · Keegan Harris · Mikhail Khodak · Steven Wu -
2022 : SimpleSpot and Evaluating Systemic Errors using Synthetic Image Datasets »
Gregory Plumb · Nari Johnson · Ángel Alexander Cabrera · Marco Ribeiro · Ameet Talwalkar -
2022 : Perspectives on Incorporating Expert Feedback into Model Updates »
Valerie Chen · Umang Bhatt · Hoda Heidari · Adrian Weller · Ameet Talwalkar -
2023 : Where Does My Model Underperform?: A Human Evaluation of Slice Discovery Algorithms »
Nari Johnson · Ángel Alexander Cabrera · Gregory Plumb · Ameet Talwalkar -
2023 : Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2023 : Learning with Explanation Constraints »
Rattana Pukdee · Dylan Sam · Nina Balcan · Pradeep Ravikumar -
2023 Oral: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2023 Poster: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2023 Poster: Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2022 Poster: Sanity Simulations for Saliency Methods »
Joon Kim · Gregory Plumb · Ameet Talwalkar -
2022 Spotlight: Sanity Simulations for Saliency Methods »
Joon Kim · Gregory Plumb · Ameet Talwalkar -
2021 : Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing (Q&A) »
Ameet Talwalkar -
2021 : Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Ameet Talwalkar -
2020 : Lightning Talks Session 2 »
Jichan Chung · Saurav Prakash · Mikhail Khodak · Ravi Rahman · Vaikkunth Mugunthan · xinwei zhang · Hossein Hosseini -
2020 : 2.7 A Simple Setting for Understanding Neural Architecture Search with Weight-Sharing »
Mikhail Khodak -
2020 Poster: Refined bounds for algorithm configuration: The knife-edge of dual class approximability »
Nina Balcan · Tuomas Sandholm · Ellen Vitercik -
2020 Poster: FACT: A Diagnostic for Group Fairness Trade-offs »
Joon Kim · Jiahao Chen · Ameet Talwalkar -
2020 Poster: A Sample Complexity Separation between Non-Convex and Convex Meta-Learning »
Nikunj Umesh Saunshi · Yi Zhang · Mikhail Khodak · Sanjeev Arora -
2020 Poster: Explaining Groups of Points in Low-Dimensional Representations »
Gregory Plumb · Jonathan Terhorst · Sriram Sankararaman · Ameet Talwalkar -
2019 : ARUBA: Efficient and Adaptive Meta-Learning with Provable Guarantees (Ameet Talwalkar) »
Ameet Talwalkar -
2019 Workshop: Adaptive and Multitask Learning: Algorithms & Systems »
Maruan Al-Shedivat · Anthony Platanios · Otilia Stretcu · Jacob Andreas · Ameet Talwalkar · Rich Caruana · Tom Mitchell · Eric Xing -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Oral: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2018 Poster: Learning to Branch »
Nina Balcan · Travis Dick · Tuomas Sandholm · Ellen Vitercik -
2018 Oral: Learning to Branch »
Nina Balcan · Travis Dick · Tuomas Sandholm · Ellen Vitercik -
2018 Tutorial: Machine Learning in Automated Mechanism Design for Pricing and Auctions »
Nina Balcan · Tuomas Sandholm · Ellen Vitercik -
2017 Poster: Differentially Private Clustering in High-Dimensional Euclidean Spaces »
Nina Balcan · Travis Dick · Yingyu Liang · Wenlong Mou · Hongyang Zhang -
2017 Talk: Differentially Private Clustering in High-Dimensional Euclidean Spaces »
Nina Balcan · Travis Dick · Yingyu Liang · Wenlong Mou · Hongyang Zhang -
2017 Poster: Risk Bounds for Transferring Representations With and Without Fine-Tuning »
Daniel McNamara · Nina Balcan -
2017 Talk: Risk Bounds for Transferring Representations With and Without Fine-Tuning »
Daniel McNamara · Nina Balcan