Timezone: »
Addressing catastrophic forgetting is one of the key challenges in continual learning where machine learning systems are trained with sequential or streaming tasks. Despite recent remarkable progress in state-of-the-art deep learning, deep neural networks (DNNs) are still plagued with the catastrophic forgetting problem. This paper presents a conceptually simple yet general and effective framework for handling catastrophic forgetting in continual learning with DNNs. The proposed method consists of two components: a neural structure optimization component and a parameter learning and/or fine-tuning component. By separating the explicit neural structure learning and the parameter estimation, not only is the proposed method capable of evolving neural structures in an intuitively meaningful way, but also shows strong capabilities of alleviating catastrophic forgetting in experiments. Furthermore, the proposed method outperforms all other baselines on the permuted MNIST dataset, the split CIFAR100 dataset and the Visual Domain Decathlon dataset in continual learning setting.
Author Information
Xilai Li (NC State University)
Yingbo Zhou (Salesforce Research)
Tianfu Wu (NC State University)
Richard Socher (Salesforce)
Caiming Xiong (Salesforce)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting »
Thu. Jun 13th 12:10 -- 12:15 AM Room Grand Ballroom
More from the Same Authors
-
2021 : Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning »
Tengyang Xie · Nan Jiang · Huan Wang · Caiming Xiong · Yu Bai -
2021 : Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games »
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong -
2022 Poster: BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation »
Junnan Li · DONGXU LI · Caiming Xiong · Steven Hoi -
2022 Spotlight: BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation »
Junnan Li · DONGXU LI · Caiming Xiong · Steven Hoi -
2021 : Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games »
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong -
2021 Poster: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Poster: How Important is the Train-Validation Split in Meta-Learning? »
Yu Bai · Minshuo Chen · Pan Zhou · Tuo Zhao · Jason Lee · Sham Kakade · Huan Wang · Caiming Xiong -
2021 Spotlight: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Spotlight: How Important is the Train-Validation Split in Meta-Learning? »
Yu Bai · Minshuo Chen · Pan Zhou · Tuo Zhao · Jason Lee · Sham Kakade · Huan Wang · Caiming Xiong -
2021 Poster: Don’t Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2021 Spotlight: Don’t Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2020 Poster: Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills »
Victor Campos · Alexander Trott · Caiming Xiong · Richard Socher · Xavier Giro-i-Nieto · Jordi Torres -
2019 Poster: Taming MAML: Efficient unbiased meta-reinforcement learning »
Hao Liu · Richard Socher · Caiming Xiong -
2019 Poster: On the Generalization Gap in Reparameterizable Reinforcement Learning »
Huan Wang · Stephan Zheng · Caiming Xiong · Richard Socher -
2019 Oral: On the Generalization Gap in Reparameterizable Reinforcement Learning »
Huan Wang · Stephan Zheng · Caiming Xiong · Richard Socher -
2019 Oral: Taming MAML: Efficient unbiased meta-reinforcement learning »
Hao Liu · Richard Socher · Caiming Xiong