Timezone: »
Poster
Online Learning to Rank with Features
Shuai Li · Tor Lattimore · Csaba Szepesvari
We introduce a new model for online ranking in which the click probability factors into an examination and attractiveness function and the attractiveness function is a linear function of a feature vector and an unknown parameter. Only relatively mild assumptions are made on the examination function. A novel algorithm for this setup is analysed, showing that the dependence on the number of items is replaced by a dependence on the dimension, allowing the new algorithm to handle a large number of items. When reduced to the orthogonal case, the regret of the algorithm improves on the state-of-the-art.
Author Information
Shuai Li (The Chinese University of Hong Kong)
Tor Lattimore (DeepMind)
Csaba Szepesvari (DeepMind/University of Alberta)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Online Learning to Rank with Features »
Wed. Jun 12th 07:05 -- 07:10 PM Room Seaside Ballroom
More from the Same Authors
-
2023 Poster: On the Optimal Approximation Ratios in Misspecified Off-Policy Value Function Estimation »
Philip Amortila · Nan Jiang · Csaba Szepesvari -
2023 Poster: Stochastic Gradient Succeeds for Bandits »
Jincheng Mei · Zixin Zhong · Bo Dai · Alekh Agarwal · Csaba Szepesvari · Dale Schuurmans -
2023 Poster: Revisiting Simple Regret: Fast Rates for Returning a Good Arm »
Yao Zhao · Connor J Stephens · Csaba Szepesvari · Kwang-Sung Jun -
2023 Poster: Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice »
Toshinori Kitamura · Tadashi Kozuno · Yunhao Tang · Nino Vieillard · Michal Valko · Wenhao Yang · Jincheng Mei · Pierre Menard · Mohammad Gheshlaghi Azar · Remi Munos · Olivier Pietquin · Matthieu Geist · Csaba Szepesvari · Wataru Kumagai · Yutaka Matsuo -
2022 Poster: Contextual Information-Directed Sampling »
Botao Hao · Tor Lattimore · Chao Qin -
2022 Spotlight: Contextual Information-Directed Sampling »
Botao Hao · Tor Lattimore · Chao Qin -
2021 Workshop: Workshop on Reinforcement Learning Theory »
Shipra Agrawal · Simon Du · Niao He · Csaba Szepesvari · Lin Yang -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor -
2021 Poster: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Spotlight: Meta-Thompson Sampling »
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari -
2021 Poster: Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient »
Botao Hao · Yaqi Duan · Tor Lattimore · Csaba Szepesvari · Mengdi Wang -
2021 Poster: Improved Regret Bound and Experience Replay in Regularized Policy Iteration »
Nevena Lazic · Dong Yin · Yasin Abbasi-Yadkori · Csaba Szepesvari -
2021 Poster: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Poster: A Distribution-dependent Analysis of Meta Learning »
Mikhail Konobeev · Ilja Kuzborskij · Csaba Szepesvari -
2021 Oral: Improved Regret Bound and Experience Replay in Regularized Policy Iteration »
Nevena Lazic · Dong Yin · Yasin Abbasi-Yadkori · Csaba Szepesvari -
2021 Spotlight: Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient »
Botao Hao · Yaqi Duan · Tor Lattimore · Csaba Szepesvari · Mengdi Wang -
2021 Spotlight: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: A Distribution-dependent Analysis of Meta Learning »
Mikhail Konobeev · Ilja Kuzborskij · Csaba Szepesvari -
2021 Poster: Bootstrapping Fitted Q-Evaluation for Off-Policy Inference »
Botao Hao · Xiang Ji · Yaqi Duan · Hao Lu · Csaba Szepesvari · Mengdi Wang -
2021 Spotlight: Bootstrapping Fitted Q-Evaluation for Off-Policy Inference »
Botao Hao · Xiang Ji · Yaqi Duan · Hao Lu · Csaba Szepesvari · Mengdi Wang -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2021 Poster: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 : Efficient Planning in Large MDPs with Weak Linear Function Approximation - Csaba Szepesvari »
Csaba Szepesvari -
2020 : Speaker Panel »
Csaba Szepesvari · Martha White · Sham Kakade · Gergely Neu · Shipra Agrawal · Akshay Krishnamurthy -
2020 Poster: Linear bandits with Stochastic Delayed Feedback »
Claire Vernade · Alexandra Carpentier · Tor Lattimore · Giovanni Zappella · Beyza Ermis · Michael Brueckner -
2020 Poster: On the Global Convergence Rates of Softmax Policy Gradient Methods »
Jincheng Mei · Chenjun Xiao · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Model-Based Reinforcement Learning with Value-Targeted Regression »
Alex Ayoub · Zeyu Jia · Csaba Szepesvari · Mengdi Wang · Lin Yang -
2020 Poster: Learning with Good Feature Representations in Bandits and in RL with a Generative Model »
Tor Lattimore · Csaba Szepesvari · Gellért Weisz -
2020 Poster: A simpler approach to accelerated optimization: iterative averaging meets optimism »
Pooria Joulani · Anant Raj · Andras Gyorgy · Csaba Szepesvari -
2019 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Alborz Geramifard · Lihong Li · Csaba Szepesvari · Tao Wang -
2019 Poster: POLITEX: Regret Bounds for Policy Iteration using Expert Prediction »
Yasin Abbasi-Yadkori · Peter Bartlett · Kush Bhatia · Nevena Lazic · Csaba Szepesvari · Gellért Weisz -
2019 Oral: POLITEX: Regret Bounds for Policy Iteration using Expert Prediction »
Yasin Abbasi-Yadkori · Peter Bartlett · Kush Bhatia · Nevena Lazic · Csaba Szepesvari · Gellért Weisz -
2019 Poster: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2019 Oral: Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits »
Branislav Kveton · Csaba Szepesvari · Sharan Vaswani · Zheng Wen · Tor Lattimore · Mohammad Ghavamzadeh -
2019 Poster: CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2019 Oral: CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2018 Poster: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Oral: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Poster: Bandits with Delayed, Aggregated Anonymous Feedback »
Ciara Pike-Burke · Shipra Agrawal · Csaba Szepesvari · Steffen Grünewälder -
2018 Oral: Bandits with Delayed, Aggregated Anonymous Feedback »
Ciara Pike-Burke · Shipra Agrawal · Csaba Szepesvari · Steffen Grünewälder -
2018 Poster: LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2018 Oral: LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration »
Gellért Weisz · Andras Gyorgy · Csaba Szepesvari -
2017 Poster: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen -
2017 Talk: Online Learning to Rank in Stochastic Click Models »
Masrour Zoghi · Tomas Tunys · Mohammad Ghavamzadeh · Branislav Kveton · Csaba Szepesvari · Zheng Wen