Timezone: »
In most machine learning training paradigms a fixed, often handcrafted, loss function is assumed to be a good proxy for an underlying evaluation metric. In this work we assess this assumption by meta-learning an adaptive loss function to directly optimize the evaluation metric. We propose a sample efficient reinforcement learning approach for adapting the loss dynamically during training. We empirically show how this formulation improves performance by simultaneously optimizing the evaluation metric and smoothing the loss landscape. We verify our method in metric learning and classification scenarios, showing considerable improvements over the state-of-the-art on a diverse set of tasks. Importantly, our method is applicable to a wide range of loss functions and evaluation metrics. Furthermore, the learned policies are transferable across tasks and data, demonstrating the versatility of the method.
Author Information
Chen Huang (Apple Inc.)
Shuangfei Zhai (Apple)
Walter Talbott (Apple)
Miguel Angel Bautista Martin (Apple Inc.)
Shih-Yu Sun (Apple)
Carlos Guestrin (Apple & Univesity of Washington)
Joshua M Susskind (Apple, Inc.)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment »
Wed. Jun 12th 11:25 -- 11:30 PM Room Hall A
More from the Same Authors
-
2021 : Implicit Acceleration and Feature Learning in Infinitely Wide Neural Networks with Bottlenecks »
Etai Littwin · Omid Saremi · Shuangfei Zhai · Vimal Thilak · Hanlin Goh · Joshua M Susskind · Greg Yang -
2021 : Implicit Greedy Rank Learning in Autoencoders via Overparameterized Linear Networks »
Shih-Yu Sun · Vimal Thilak · Etai Littwin · Omid Saremi · Joshua M Susskind -
2023 : BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping »
Jiatao Gu · Shuangfei Zhai · Yizhe Zhang · Lingjie Liu · Joshua M Susskind -
2023 Poster: Stabilizing Transformer Training by Preventing Attention Entropy Collapse »
Shuangfei Zhai · Tatiana Likhomanenko · Etai Littwin · Dan Busbridge · Jason Ramapuram · Yizhe Zhang · Jiatao Gu · Joshua M Susskind -
2023 Poster: NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion »
Jiatao Gu · Alex Trevithick · Kai-En Lin · Joshua M Susskind · Christian Theobalt · Lingjie Liu · Ravi Ramamoorthi -
2022 Poster: Efficient Representation Learning via Adaptive Context Pooling »
Chen Huang · Walter Talbott · Navdeep Jaitly · Joshua M Susskind -
2022 Spotlight: Efficient Representation Learning via Adaptive Context Pooling »
Chen Huang · Walter Talbott · Navdeep Jaitly · Joshua M Susskind -
2022 Poster: Position Prediction as an Effective Pretraining Strategy »
Shuangfei Zhai · Navdeep Jaitly · Jason Ramapuram · Dan Busbridge · Tatiana Likhomanenko · Joseph Cheng · Walter Talbott · Chen Huang · Hanlin Goh · Joshua M Susskind -
2022 Spotlight: Position Prediction as an Effective Pretraining Strategy »
Shuangfei Zhai · Navdeep Jaitly · Jason Ramapuram · Dan Busbridge · Tatiana Likhomanenko · Joseph Cheng · Walter Talbott · Chen Huang · Hanlin Goh · Joshua M Susskind -
2021 Poster: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Spotlight: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2020 Poster: Equivariant Neural Rendering »
Emilien Dupont · Miguel Angel Bautista Martin · Alex Colburn · Aditya Sankar · Joshua M Susskind · Qi Shan -
2020 Poster: AdaScale SGD: A User-Friendly Algorithm for Distributed Training »
Tyler Johnson · Pulkit Agrawal · Haijie Gu · Carlos Guestrin -
2017 Poster: StingyCD: Safely Avoiding Wasteful Updates in Coordinate Descent »
Tyler Johnson · Carlos Guestrin -
2017 Talk: StingyCD: Safely Avoiding Wasteful Updates in Coordinate Descent »
Tyler Johnson · Carlos Guestrin