Timezone: »
Poster
Replica Conditional Sequential Monte Carlo
Alex Shestopaloff · Arnaud Doucet
We propose a Markov chain Monte Carlo (MCMC) scheme to perform state inference in non-linear non-Gaussian state-space models. Current state-of-the-art methods to address this problem rely on particle MCMC techniques and its variants, such as the iterated conditional Sequential Monte Carlo (cSMC) scheme, which uses a Sequential Monte Carlo (SMC) type proposal within MCMC. A deficiency of standard SMC proposals is that they only use observations up to time $t$ to propose states at time $t$ when an entire observation sequence is available. More sophisticated SMC based on lookahead techniques could be used but they can be difficult to put in practice. We propose here replica cSMC where we build SMC proposals for one replica using information from the entire observation sequence by conditioning on the states of the other replicas. This approach is easily parallelizable and we demonstrate its excellent empirical performance when compared to the standard iterated cSMC scheme at fixed computational complexity.
Author Information
Alex Shestopaloff (The Alan Turing Institute / University of Edinburgh)
Arnaud Doucet (Oxford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Replica Conditional Sequential Monte Carlo »
Thu. Jun 13th 05:00 -- 05:05 PM Room Room 101
More from the Same Authors
-
2022 : Riemannian Diffusion Schr\"odinger Bridge »
James Thornton · Valentin De Bortoli · Michael Hutchinson · Emile Mathieu · Yee Whye Teh · Arnaud Doucet -
2023 : Diffusion Generative Inverse Design »
Marin Vlastelica · Tatiana Lopez-Guevara · Kelsey Allen · Peter Battaglia · Arnaud Doucet · Kimberly Stachenfeld -
2023 : Categorical SDEs with Simplex Diffusion »
Pierre Richemond · Sander Dieleman · Arnaud Doucet -
2023 Poster: Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC »
Yilun Du · Conor Durkan · Robin Strudel · Josh Tenenbaum · Sander Dieleman · Rob Fergus · Jascha Sohl-Dickstein · Arnaud Doucet · Will Grathwohl -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2021 Poster: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Spotlight: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Poster: Differentiable Particle Filtering via Entropy-Regularized Optimal Transport »
Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet -
2021 Oral: Differentiable Particle Filtering via Entropy-Regularized Optimal Transport »
Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet -
2021 Poster: Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding »
Yangjun Ruan · Karen Ullrich · Daniel Severo · James Townsend · Ashish Khisti · Arnaud Doucet · Alireza Makhzani · Chris Maddison -
2021 Oral: Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding »
Yangjun Ruan · Karen Ullrich · Daniel Severo · James Townsend · Ashish Khisti · Arnaud Doucet · Alireza Makhzani · Chris Maddison -
2020 Poster: Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows »
Rob Cornish · Anthony Caterini · George Deligiannidis · Arnaud Doucet -
2019 Poster: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Oral: Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets »
Rob Cornish · Paul Vanetti · Alexandre Bouchard-Côté · George Deligiannidis · Arnaud Doucet -
2019 Poster: On the Impact of the Activation function on Deep Neural Networks Training »
Soufiane Hayou · Arnaud Doucet · Judith Rousseau -
2019 Oral: On the Impact of the Activation function on Deep Neural Networks Training »
Soufiane Hayou · Arnaud Doucet · Judith Rousseau