Timezone: »
Adversarial domain adaptation has made remarkable advances in learning transferable representations for knowledge transfer across domains. While adversarial learning strengthens the feature transferability which the community focuses on, its impact on the feature discriminability has not been fully explored. In this paper, a series of experiments based on spectral analysis of the feature representations have been conducted, revealing an unexpected deterioration of the discriminability while learning transferable features adversarially. Our key finding is that the eigenvectors with the largest singular values will dominate the feature transferability. As a consequence, the transferability is enhanced at the expense of over penalization of other eigenvectors that embody rich structures crucial for discriminability. Towards this problem, we present Batch Spectral Penalization (BSP), a general approach to penalizing the largest singular values so that other eigenvectors can be relatively strengthened to boost the feature discriminability. Experiments show that the approach significantly improves upon representative adversarial domain adaptation methods to yield state of the art results.
Author Information
Xinyang Chen (Tsinghua University)
Sinan Wang (Tsinghua University)
Mingsheng Long (Tsinghua University)
Jianmin Wang (Tsinghua University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation »
Wed. Jun 12th 10:00 -- 10:05 PM Room Room 201
More from the Same Authors
-
2023 Poster: CLIPood: Generalizing CLIP to Out-of-Distributions »
Yang Shu · Xingzhuo Guo · Jialong Wu · Ximei Wang · Jianmin Wang · Mingsheng Long -
2023 Poster: Solving High-Dimensional PDEs with Latent Spectral Models »
Haixu Wu · Tengge Hu · huakun luo · Jianmin Wang · Mingsheng Long -
2023 Poster: Estimating Heterogeneous Treatment Effects: Mutual Information Bounds and Learning Algorithms »
Xingzhuo Guo · Yuchen Zhang · Jianmin Wang · Mingsheng Long -
2022 Poster: Flowformer: Linearizing Transformers with Conservation Flows »
Haixu Wu · Jialong Wu · Jiehui Xu · Jianmin Wang · Mingsheng Long -
2022 Spotlight: Flowformer: Linearizing Transformers with Conservation Flows »
Haixu Wu · Jialong Wu · Jiehui Xu · Jianmin Wang · Mingsheng Long -
2021 Poster: LogME: Practical Assessment of Pre-trained Models for Transfer Learning »
Kaichao You · Yong Liu · Jianmin Wang · Mingsheng Long -
2021 Spotlight: LogME: Practical Assessment of Pre-trained Models for Transfer Learning »
Kaichao You · Yong Liu · Jianmin Wang · Mingsheng Long -
2021 Poster: Representation Subspace Distance for Domain Adaptation Regression »
Xinyang Chen · Sinan Wang · Jianmin Wang · Mingsheng Long -
2021 Spotlight: Representation Subspace Distance for Domain Adaptation Regression »
Xinyang Chen · Sinan Wang · Jianmin Wang · Mingsheng Long -
2021 Poster: Self-Tuning for Data-Efficient Deep Learning »
Ximei Wang · Jinghan Gao · Mingsheng Long · Jianmin Wang -
2021 Poster: Zoo-Tuning: Adaptive Transfer from A Zoo of Models »
Yang Shu · Zhi Kou · Zhangjie Cao · Jianmin Wang · Mingsheng Long -
2021 Spotlight: Self-Tuning for Data-Efficient Deep Learning »
Ximei Wang · Jinghan Gao · Mingsheng Long · Jianmin Wang -
2021 Spotlight: Zoo-Tuning: Adaptive Transfer from A Zoo of Models »
Yang Shu · Zhi Kou · Zhangjie Cao · Jianmin Wang · Mingsheng Long -
2020 Poster: Unsupervised Transfer Learning for Spatiotemporal Predictive Networks »
Zhiyu Yao · Yunbo Wang · Mingsheng Long · Jianmin Wang -
2019 Poster: Bridging Theory and Algorithm for Domain Adaptation »
Yuchen Zhang · Tianle Liu · Mingsheng Long · Michael Jordan -
2019 Oral: Bridging Theory and Algorithm for Domain Adaptation »
Yuchen Zhang · Tianle Liu · Mingsheng Long · Michael Jordan -
2019 Poster: Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers »
Hong Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2019 Poster: Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation »
Kaichao You · Ximei Wang · Mingsheng Long · Michael Jordan -
2019 Oral: Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation »
Kaichao You · Ximei Wang · Mingsheng Long · Michael Jordan -
2019 Oral: Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers »
Hong Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2018 Poster: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning »
Yunbo Wang · Zhifeng Gao · Mingsheng Long · Jianmin Wang · Philip Yu -
2018 Oral: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning »
Yunbo Wang · Zhifeng Gao · Mingsheng Long · Jianmin Wang · Philip Yu -
2017 Poster: Deep Transfer Learning with Joint Adaptation Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan -
2017 Talk: Deep Transfer Learning with Joint Adaptation Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan