Timezone: »
In this work we analyse quantitatively the interplay between the loss landscape and performance of descent algorithms in a prototypical inference problem, the spiked matrix-tensor model. We study a loss function that is the negative log-likelihood of the model. We analyse the number of local minima at a fixed distance from the signal/spike with the Kac-Rice formula, and locate trivialization of the landscape at large signal-to-noise ratios. We evaluate analytically the performance of a gradient flow algorithm using integro-differential PDEs as developed in physics of disordered systems for the Langevin dynamics. We analyze the performance of an approximate message passing algorithm estimating the maximum likelihood configuration via its state evolution. We conclude by comparing the above results: while we observe a drastic slow down of the gradient flow dynamics even in the region where the landscape is trivial, both the analyzed algorithms are shown to perform well even in the part of the region of parameters where spurious local minima are present.
Author Information
Stefano Sarao Mannelli (Institut de Physique Théorique)
Florent Krzakala (ENS)
Pierfrancesco Urbani (Institut de Physique Théorique)
Lenka Zdeborova (CNRS)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models »
Tue. Jun 11th 06:25 -- 06:30 PM Room Room 103
More from the Same Authors
-
2023 Poster: Bayes-optimal Learning of Deep Random Networks of Extensive-width »
Hugo Cui · FLORENT KRZAKALA · Lenka Zdeborova -
2023 Oral: Bayes-optimal Learning of Deep Random Networks of Extensive-width »
Hugo Cui · FLORENT KRZAKALA · Lenka Zdeborova -
2021 : Overparametrization: Insights from solvable models »
Lenka Zdeborova -
2021 Poster: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Spotlight: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2020 Poster: Generalisation error in learning with random features and the hidden manifold model »
Federica Gerace · Bruno Loureiro · Florent Krzakala · Marc Mezard · Lenka Zdeborova -
2020 Poster: Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime »
Stéphane d'Ascoli · Maria Refinetti · Giulio Biroli · Florent Krzakala -
2020 Poster: The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture »
Francesca Mignacco · Florent Krzakala · Yue Lu · Pierfrancesco Urbani · Lenka Zdeborova -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Loss landscape and behaviour of algorithms in the spiked matrix-tensor model »
Lenka Zdeborova