Timezone: »
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables. However, such amortized variational inference faces two challenges: (1) the limited posterior expressiveness of fully-factorized Gaussian assumption and (2) the amortization error of the inference model. We present a novel approach that addresses both challenges. First, we focus on ReLU networks with Gaussian output and illustrate their connection to probabilistic PCA. Building on this observation, we derive an iterative algorithm that finds the mode of the posterior and apply fullcovariance Gaussian posterior approximation centered on the mode. Subsequently, we present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models. Based on the Laplace approximation of the latent variable posterior, VLAEs enhance the expressiveness of the posterior while reducing the amortization error. Empirical results on MNIST, Omniglot, Fashion-MNIST, SVHN and CIFAR10 show that the proposed approach significantly outperforms other recent amortized or iterative methods on the ReLU networks.
Author Information
Yookoon Park (Seoul National University)
Chris Kim (Seoul National University)
Gunhee Kim (Seoul National University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Variational Laplace Autoencoders »
Thu. Jun 13th 04:20 -- 04:25 PM Room Hall A
More from the Same Authors
-
2021 Poster: Unsupervised Representation Learning via Neural Activation Coding »
Yookoon Park · Sangho Lee · Gunhee Kim · David Blei -
2021 Oral: Unsupervised Representation Learning via Neural Activation Coding »
Yookoon Park · Sangho Lee · Gunhee Kim · David Blei -
2021 Poster: Unsupervised Skill Discovery with Bottleneck Option Learning »
Jaekyeom Kim · Seohong Park · Gunhee Kim -
2021 Spotlight: Unsupervised Skill Discovery with Bottleneck Option Learning »
Jaekyeom Kim · Seohong Park · Gunhee Kim -
2019 Poster: Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty »
Youngjin Kim · Daniel Nam · Hyunwoo Kim · Ji-Hoon Kim · Gunhee Kim -
2019 Oral: Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty »
Youngjin Kim · Daniel Nam · Hyunwoo Kim · Ji-Hoon Kim · Gunhee Kim -
2018 Poster: Video Prediction with Appearance and Motion Conditions »
Yunseok Jang · Gunhee Kim · Yale Song -
2018 Oral: Video Prediction with Appearance and Motion Conditions »
Yunseok Jang · Gunhee Kim · Yale Song -
2017 Poster: SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization »
Juyong Kim · Yookoon Park · Gunhee Kim · Sung Ju Hwang -
2017 Talk: SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization »
Juyong Kim · Yookoon Park · Gunhee Kim · Sung Ju Hwang