Timezone: »

 
Poster
Random Function Priors for Correlation Modeling
Aonan Zhang · John Paisley

Wed Jun 12 06:30 PM -- 09:00 PM (PDT) @ Pacific Ballroom #222
The likelihood model of high dimensional data $X_n$ can often be expressed as $p(X_n|Z_n,\theta)$, where $\theta\mathrel{\mathop:}=(\theta_k)_{k\in[K]}$ is a collection of hidden features shared across objects, indexed by $n$, and $Z_n$ is a non-negative factor loading vector with $K$ entries where $Z_{nk}$ indicates the strength of $\theta_k$ used to express $X_n$. In this paper, we introduce random function priors for $Z_n$ for modeling correlations among its $K$ dimensions $Z_{n1}$ through $Z_{nK}$, which we call \textit{population random measure embedding} (PRME). Our model can be viewed as a generalized paintbox model~\cite{Broderick13} using random functions, and can be learned efficiently with neural networks via amortized variational inference. We derive our Bayesian nonparametric method by applying a representation theorem on separately exchangeable discrete random measures.

Author Information

Aonan Zhang (Columbia University)
John Paisley (Columbia University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors