Timezone: »
We devise a distributional variant of gradient temporal-difference (TD) learning. Distributional reinforcement learning has been demonstrated to outperform the regular one in the recent study \citep{bellemare2017distributional}. In the policy evaluation setting, we design two new algorithms called distributional GTD2 and distributional TDC using the Cram{\'e}r distance on the distributional version of the Bellman error objective function, which inherits advantages of both the nonlinear gradient TD algorithms and the distributional RL approach. In the control setting, we propose the distributional Greedy-GQ using similar derivation. We prove the asymptotic almost-sure convergence of distributional GTD2 and TDC to a local optimal solution for general smooth function approximators, which includes neural networks that have been widely used in recent study to solve the real-life RL problems. In each step, the computational complexity of above three algorithms is linear w.r.t.\ the number of the parameters of the function approximator, thus can be implemented efficiently for neural networks.
Author Information
chao qu (Ant Financial Service Group)
Shie Mannor (Technion)
Huan Xu (Georgia Tech)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Nonlinear Distributional Gradient Temporal-Difference Learning »
Tue. Jun 11th 06:25 -- 06:30 PM Room Hall B
More from the Same Authors
-
2023 : Optimization or Architecture: What Matters in Non-Linear Filtering? »
Ido Greenberg · Netanel Yannay · Shie Mannor -
2023 : Optimization or Architecture: What Matters in Non-Linear Filtering? »
Ido Greenberg · Netanel Yannay · Shie Mannor -
2023 : Optimization or Architecture: What Matters in Non-Linear Filtering? »
Ido Greenberg · Netanel Yannay · Shie Mannor -
2023 Poster: Learning to Initiate and Reason in Event-Driven Cascading Processes »
Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik -
2023 Poster: Learning Hidden Markov Models When the Locations of Missing Observations are Unknown »
BINYAMIN PERETS · Mark Kozdoba · Shie Mannor -
2023 Poster: PPG Reloaded: An Empirical Study on What Matters in Phasic Policy Gradient »
Kaixin Wang · Zhou Daquan · Jiashi Feng · Shie Mannor -
2023 Poster: Representation-Driven Reinforcement Learning »
Ofir Nabati · Guy Tennenholtz · Shie Mannor -
2023 Poster: Reward-Mixing MDPs with Few Latent Contexts are Learnable »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Poster: Analysis of Stochastic Processes through Replay Buffers »
Shirli Di-Castro Shashua · Shie Mannor · Dotan Di Castro -
2022 Poster: Actor-Critic based Improper Reinforcement Learning »
Mohammadi Zaki · Avi Mohan · Aditya Gopalan · Shie Mannor -
2022 Poster: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Poster: The Geometry of Robust Value Functions »
Kaixin Wang · Navdeep Kumar · Kuangqi Zhou · Bryan Hooi · Jiashi Feng · Shie Mannor -
2022 Spotlight: The Geometry of Robust Value Functions »
Kaixin Wang · Navdeep Kumar · Kuangqi Zhou · Bryan Hooi · Jiashi Feng · Shie Mannor -
2022 Spotlight: Actor-Critic based Improper Reinforcement Learning »
Mohammadi Zaki · Avi Mohan · Aditya Gopalan · Shie Mannor -
2022 Spotlight: Analysis of Stochastic Processes through Replay Buffers »
Shirli Di-Castro Shashua · Shie Mannor · Dotan Di Castro -
2022 Spotlight: Optimizing Tensor Network Contraction Using Reinforcement Learning »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2022 Poster: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2022 Spotlight: Coordinated Attacks against Contextual Bandits: Fundamental Limits and Defense Mechanisms »
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor -
2021 : Invited Speaker: Shie Mannor: Lenient Regret »
Shie Mannor -
2021 : RL + Operations Research Panel »
Jim Dai · Fei Fang · Shie Mannor · Yuandong Tian · Zhiwei (Tony) Qin · Zongqing Lu -
2021 Poster: Detecting Rewards Deterioration in Episodic Reinforcement Learning »
Ido Greenberg · Shie Mannor -
2021 Poster: Online Limited Memory Neural-Linear Bandits with Likelihood Matching »
Ofir Nabati · Tom Zahavy · Shie Mannor -
2021 Spotlight: Online Limited Memory Neural-Linear Bandits with Likelihood Matching »
Ofir Nabati · Tom Zahavy · Shie Mannor -
2021 Spotlight: Detecting Rewards Deterioration in Episodic Reinforcement Learning »
Ido Greenberg · Shie Mannor -
2021 Poster: Confidence-Budget Matching for Sequential Budgeted Learning »
Yonathan Efroni · Nadav Merlis · Aadirupa Saha · Shie Mannor -
2021 Spotlight: Confidence-Budget Matching for Sequential Budgeted Learning »
Yonathan Efroni · Nadav Merlis · Aadirupa Saha · Shie Mannor -
2021 Poster: Value Iteration in Continuous Actions, States and Time »
Michael Lutter · Shie Mannor · Jan Peters · Dieter Fox · Animesh Garg -
2021 Spotlight: Value Iteration in Continuous Actions, States and Time »
Michael Lutter · Shie Mannor · Jan Peters · Dieter Fox · Animesh Garg -
2021 Poster: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2021 Spotlight: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks »
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik -
2020 Poster: Optimistic Policy Optimization with Bandit Feedback »
Lior Shani · Yonathan Efroni · Aviv Rosenberg · Shie Mannor -
2020 Poster: Topic Modeling via Full Dependence Mixtures »
Dan Fisher · Mark Kozdoba · Shie Mannor -
2019 Poster: Competing Against Nash Equilibria in Adversarially Changing Zero-Sum Games »
Adrian Rivera Cardoso · Jacob Abernethy · He Wang · Huan Xu -
2019 Oral: Competing Against Nash Equilibria in Adversarially Changing Zero-Sum Games »
Adrian Rivera Cardoso · Jacob Abernethy · He Wang · Huan Xu -
2019 Poster: Exploration Conscious Reinforcement Learning Revisited »
Lior Shani · Yonathan Efroni · Shie Mannor -
2019 Poster: Action Robust Reinforcement Learning and Applications in Continuous Control »
Chen Tessler · Chen Tessler · Yonathan Efroni · Shie Mannor -
2019 Poster: The Natural Language of Actions »
Guy Tennenholtz · Shie Mannor -
2019 Oral: Exploration Conscious Reinforcement Learning Revisited »
Lior Shani · Yonathan Efroni · Shie Mannor -
2019 Oral: The Natural Language of Actions »
Guy Tennenholtz · Shie Mannor -
2019 Oral: Action Robust Reinforcement Learning and Applications in Continuous Control »
Chen Tessler · Chen Tessler · Yonathan Efroni · Yonathan Efroni · Shie Mannor · Shie Mannor -
2018 Poster: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Oral: Beyond the One-Step Greedy Approach in Reinforcement Learning »
Yonathan Efroni · Gal Dalal · Bruno Scherrer · Shie Mannor -
2018 Poster: Non-convex Conditional Gradient Sliding »
chao qu · Yan Li · Huan Xu -
2018 Oral: Non-convex Conditional Gradient Sliding »
chao qu · Yan Li · Huan Xu -
2017 Workshop: Lifelong Learning: A Reinforcement Learning Approach »
Sarath Chandar · Balaraman Ravindran · Daniel J. Mankowitz · Shie Mannor · Tom Zahavy -
2017 Poster: Consistent On-Line Off-Policy Evaluation »
Assaf Hallak · Shie Mannor -
2017 Talk: Consistent On-Line Off-Policy Evaluation »
Assaf Hallak · Shie Mannor -
2017 Poster: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor -
2017 Poster: Multi-objective Bandits: Optimizing the Generalized Gini Index »
Robert Busa-Fekete · Balazs Szorenyi · Paul Weng · Shie Mannor -
2017 Poster: Fake News Mitigation via Point Process Based Intervention »
Mehrdad Farajtabar · Jiachen Yang · Xiaojing Ye · Huan Xu · Rakshit Trivedi · Elias Khalil · Shuang Li · Le Song · Hongyuan Zha -
2017 Talk: End-to-End Differentiable Adversarial Imitation Learning »
Nir Baram · Oron Anschel · Itai Caspi · Shie Mannor -
2017 Talk: Fake News Mitigation via Point Process Based Intervention »
Mehrdad Farajtabar · Jiachen Yang · Xiaojing Ye · Huan Xu · Rakshit Trivedi · Elias Khalil · Shuang Li · Le Song · Hongyuan Zha -
2017 Talk: Multi-objective Bandits: Optimizing the Generalized Gini Index »
Robert Busa-Fekete · Balazs Szorenyi · Paul Weng · Shie Mannor