Timezone: »
Website link: https://sites.google.com/view/mtlrl/
Significant progress has been made in reinforcement learning, enabling agents to accomplish complex tasks such as Atari games, robotic manipulation, simulated locomotion, and Go. These successes have stemmed from the core reinforcement learning formulation of learning a single policy or value function from scratch. However, reinforcement learning has proven challenging to scale to many practical real world problems due to problems in learning efficiency and objective specification, among many others. Recently, there has been emerging interest and research in leveraging structure and information across multiple reinforcement learning tasks to more efficiently and effectively learn complex behaviors. This includes:
1. curriculum and lifelong learning, where the problem requires learning a sequence of tasks, leveraging their shared structure to enable knowledge transfer
2. goal-conditioned reinforcement learning techniques that leverage the structure of the provided goal space to learn many tasks significantly faster
3. meta-learning methods that aim to learn efficient learning algorithms that can learn new tasks quickly
4. hierarchical reinforcement learning, where the reinforcement learning problem might entail a compositions of subgoals or subtasks with shared structure
Multi-task and lifelong reinforcement learning has the potential to alter the paradigm of traditional reinforcement learning, to provide more practical and diverse sources of supervision, while helping overcome many challenges associated with reinforcement learning, such as exploration, sample efficiency and credit assignment. However, the field of multi-task and lifelong reinforcement learning is still young, with many more developments needed in terms of problem formulation, algorithmic and theoretical advances as well as better benchmarking and evaluation.
The focus of this workshop will be on both the algorithmic and theoretical foundations of multi-task and lifelong reinforcement learning as well as the practical challenges associated with building multi-tasking agents and lifelong learning benchmarks. Our goal is to bring together researchers that study different problem domains (such as games, robotics, language, and so forth), different optimization approaches (deep learning, evolutionary algorithms, model-based control, etc.), and different formalisms (as mentioned above) to discuss the frontiers, open problems and meaningful next steps in multi-task and lifelong reinforcement learning.
Sat 8:45 a.m. - 9:00 a.m.
|
Opening Remarks
|
🔗 |
Sat 9:00 a.m. - 9:25 a.m.
|
Sergey Levine: Unsupervised Reinforcement Learning and Meta-Learning
(
Invited talk
)
|
Sergey Levine 🔗 |
Sat 9:25 a.m. - 9:50 a.m.
|
Spotlight Presentations
(
Spotlights
)
|
🔗 |
Sat 9:50 a.m. - 10:15 a.m.
|
Peter Stone: Learning Curricula for Transfer Learning in RL
(
Invited talk
)
|
Peter Stone 🔗 |
Sat 10:15 a.m. - 10:30 a.m.
|
Contributed Talks
10:15 Meta-Learning via Learned Loss Yevgen Chebotar, Artem Molchanov, Sarah Bechtle*, Ludovic Righetti, Franziska Meier, Gaurav Sukhatme 10:23 MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies Xue Bin Peng, Michael Chang, Grace Zhang Pieter Abbeel, Sergey Levine |
🔗 |
Sat 10:30 a.m. - 11:00 a.m.
|
Posters and Break
(
Poster Session and Break
)
|
🔗 |
Sat 11:00 a.m. - 11:25 a.m.
|
Jacob Andreas: Linguistic Scaffolds for Policy Learning
(
Invited talk
)
|
Jacob Andreas 🔗 |
Sat 11:25 a.m. - 11:50 a.m.
|
Karol Hausman: Skill Representation and Supervision in Multi-Task Reinforcement Learning
(
Invited talk
)
|
Karol Hausman 🔗 |
Sat 11:50 a.m. - 12:20 p.m.
|
Contributed Talks
11:50 Which Tasks Should Be Learned Together in Multi-task Learning? Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, Silvio Savarese 11:58 Finetuning Subpolicies for Hierarchical Reinforcement Learning Carlos Florensa, Alexander Li and Pieter Abbeel 12:06 Online Learning for Auxiliary Task Weighting for Reinforcement Learning Xingyu Lin, Harjatin Singh Baweja, George Kantor, David Held 12:14 Guided Meta-Policy Search Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn |
🔗 |
Sat 12:20 p.m. - 2:00 p.m.
|
Posters and Lunch Break
(
Poster Session and Lunch Break
)
|
🔗 |
Sat 2:00 p.m. - 2:25 p.m.
|
Martha White: Learning Representations for Continual Learning
(
Invited talk
)
|
Martha White 🔗 |
Sat 2:25 p.m. - 2:50 p.m.
|
Natalia Diaz-Rodriguez: Continual Learning and Robotics: an overview
(
Invited talk
)
|
Natalia Diaz Rodriguez 🔗 |
Sat 2:50 p.m. - 3:30 p.m.
|
Posters and Break
(
Poster Session and Break
)
|
🔗 |
Sat 3:30 p.m. - 3:55 p.m.
|
Jeff Clune: Towards Solving Catastrophic Forgetting with Neuromodulation & Learning Curricula by Generating Environments
(
Invited talk
)
|
Jeff Clune 🔗 |
Sat 3:55 p.m. - 4:15 p.m.
|
Contributed Talks
03:55 Online Continual Learning with Maximally Inferred Retrieval Rahaf Alundji, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, Tinne Tuytelaars 04:05 Skew-Fit: State-Covering Self-Supervised Reinforcement Learning Vitchyr H. Pong , Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, Sergey Levine |
🔗 |
Sat 4:15 p.m. - 4:40 p.m.
|
Nicolas Heess: TBD
(
Invited talk
)
|
Nicolas Heess 🔗 |
Sat 4:40 p.m. - 5:05 p.m.
|
Benjamin Rosman: Exploiting Structure For Accelerating Reinforcement Learning
(
Invited talk
)
|
Benjamin Rosman 🔗 |
Sat 5:05 p.m. - 6:00 p.m.
|
Panel Discussion
|
🔗 |
Author Information
Sarath Chandar (Mila / University of Montreal)
Shagun Sodhani (University of Montreal)
Khimya Khetarpal (McGill University, Reasoning and Learning Lab)
Ph.D. Student
Tom Zahavy (Technion)
Daniel J. Mankowitz (Deepmind)
Shie Mannor (Technion)
Balaraman Ravindran (Indian Institute of Technology)
Doina Precup (McGill University / DeepMind)
Chelsea Finn (Stanford, Google, UC Berkeley)

Chelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University. Finn's research interests lie in the capability of robots and other agents to develop broadly intelligent behavior through learning and interaction. To this end, her work has included deep learning algorithms for concurrently learning visual perception and control in robotic manipulation skills, inverse reinforcement methods for learning reward functions underlying behavior, and meta-learning algorithms that can enable fast, few-shot adaptation in both visual perception and deep reinforcement learning. Finn received her Bachelor's degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, the Microsoft Research Faculty Fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across four universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.
Abhishek Gupta (UC Berkeley)
Amy Zhang (McGill University)
Kyunghyun Cho (New York University)

Kyunghyun Cho is an associate professor of computer science and data science at New York University and CIFAR Fellow of Learning in Machines & Brains. He is also a senior director of frontier research at the Prescient Design team within Genentech Research & Early Development (gRED). He was a research scientist at Facebook AI Research from June 2017 to May 2020 and a postdoctoral fellow at University of Montreal until Summer 2015 under the supervision of Prof. Yoshua Bengio, after receiving MSc and PhD degrees from Aalto University April 2011 and April 2014, respectively, under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He received the Samsung Ho-Am Prize in Engineering in 2021. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
Andrei A Rusu (DeepMind)
Facebook Rob Fergus (Facebook AI Research, NYU)
More from the Same Authors
-
2021 : True Few-Shot Learning with Language Models »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 : Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan P. Adams · Sergey Levine -
2021 : Randomized Least Squares Policy Optimization »
Haque Ishfaq · Zhuoran Yang · Andrei Lupu · Viet Nguyen · Lewis Liu · Riashat Islam · Zhaoran Wang · Doina Precup -
2021 : Finite time analysis of temporal difference learning with linear function approximation: the tail averaged case »
Gandharv Patil · Prashanth L.A. · Doina Precup -
2021 : Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention »
Abhishek Gupta · Justin Yu · Tony Z. Zhao · Vikash Kumar · Aaron Rovinsky · Kelvin Xu · Thomas Devlin · Sergey Levine -
2022 : Linear Connectivity Reveals Generalization Strategies »
Jeevesh Juneja · Rachit Bansal · Kyunghyun Cho · João Sedoc · Naomi Saphra -
2022 : Effective Offline RL Needs Going Beyond Pessimism: Representations and Distributional Shift »
Xinyang Geng · Kevin Li · Abhishek Gupta · Aviral Kumar · Sergey Levine -
2022 : Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta -
2022 : Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta -
2023 : Latent State Transitions in Training Dynamics »
Michael Hu · Angelica Chen · Naomi Saphra · Kyunghyun Cho -
2023 : Separating multimodal modeling from multidimensional modeling for multimodal learning »
Divyam Madaan · Taro Makino · Sumit Chopra · Kyunghyun Cho -
2023 : Antibody DomainBed: Towards robust predictions using invariant representations of biological sequences carrying complex distribution shifts »
Natasa Tagasovska · Ji Won Park · Stephen Ra · Kyunghyun Cho -
2023 : On learning history-based policies for controlling Markov decision processes »
Gandharv Patil · Aditya Mahajan · Doina Precup -
2023 : An Empirical Study of the Effectiveness of Using a Replay Buffer on Mode Discovery in GFlowNets »
Nikhil Murali Vemgal · Elaine Lau · Doina Precup -
2023 : Thompson Sampling for Improved Exploration in GFlowNets »
Jarrid Rector-Brooks · Kanika Madan · Moksh Jain · Maksym Korablyov · Chenghao Liu · Sarath Chandar · Nikolay Malkin · Yoshua Bengio -
2023 : Concept Bottleneck Generative Models »
Aya Ismail · Julius Adebayo · Hector Corrada Bravo · Stephen Ra · Kyunghyun Cho -
2023 : Protein Design with Guided Discrete Diffusion »
Nate Gruver · Samuel Stanton · Nathan Frey · Tim G. J. Rudner · Isidro Hotzel · Julien Lafrance-Vanasse · Arvind Rajpal · Kyunghyun Cho · Andrew Wilson -
2023 : Accelerating exploration and representation learning with offline pre-training »
Bogdan Mazoure · Jake Bruce · Doina Precup · Rob Fergus · Ankit Anand -
2023 Poster: Discovering Object-Centric Generalized Value Functions From Pixels »
Somjit Nath · Gopeshh Subbaraj · Khimya Khetarpal · Samira Ebrahimi Kahou -
2023 Poster: Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2023 Poster: Towards Understanding and Improving GFlowNet Training »
Max Shen · Emmanuel Bengio · Ehsan Hajiramezanali · Andreas Loukas · Kyunghyun Cho · Tommaso Biancalani -
2023 Panel: ICML Education Outreach Panel »
Andreas Krause · Barbara Engelhardt · Emma Brunskill · Kyunghyun Cho -
2022 Workshop: Decision Awareness in Reinforcement Learning »
Evgenii Nikishin · Pierluca D'Oro · Doina Precup · Andre Barreto · Amir-massoud Farahmand · Pierre-Luc Bacon -
2022 Poster: Why Should I Trust You, Bellman? The Bellman Error is a Poor Replacement for Value Error »
Scott Fujimoto · David Meger · Doina Precup · Ofir Nachum · Shixiang Gu -
2022 Spotlight: Why Should I Trust You, Bellman? The Bellman Error is a Poor Replacement for Value Error »
Scott Fujimoto · David Meger · Doina Precup · Ofir Nachum · Shixiang Gu -
2022 Poster: Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks »
Nan Wu · Stanislaw Jastrzebski · Kyunghyun Cho · Krzysztof J Geras -
2022 Poster: Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification »
Leo Schwinn · Leon Bungert · An Nguyen · René Raab · Falk Pulsmeyer · Doina Precup · Bjoern Eskofier · Dario Zanca -
2022 Poster: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2022 Spotlight: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2022 Spotlight: Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification »
Leo Schwinn · Leon Bungert · An Nguyen · René Raab · Falk Pulsmeyer · Doina Precup · Bjoern Eskofier · Dario Zanca -
2022 Spotlight: Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks »
Nan Wu · Stanislaw Jastrzebski · Kyunghyun Cho · Krzysztof J Geras -
2022 Poster: Hindering Adversarial Attacks with Implicit Neural Representations »
Andrei A Rusu · Dan Andrei Calian · Sven Gowal · Raia Hadsell -
2022 Spotlight: Hindering Adversarial Attacks with Implicit Neural Representations »
Andrei A Rusu · Dan Andrei Calian · Sven Gowal · Raia Hadsell -
2021 : Panel Discussion »
Rosemary Nan Ke · Danijar Hafner · Pieter Abbeel · Chelsea Finn · Chelsea Finn -
2021 : Invited Talk by Chelsea Finn »
Chelsea Finn -
2021 Workshop: ICML 2021 Workshop on Unsupervised Reinforcement Learning »
Feryal Behbahani · Joelle Pineau · Lerrel Pinto · Roberta Raileanu · Aravind Srinivas · Denis Yarats · Amy Zhang -
2021 Poster: Rissanen Data Analysis: Examining Dataset Characteristics via Description Length »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Spotlight: Rissanen Data Analysis: Examining Dataset Characteristics via Description Length »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Poster: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Poster: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Spotlight: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Spotlight: Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization »
Stanislaw Jastrzebski · Devansh Arpit · Oliver Astrand · Giancarlo Kerg · Huan Wang · Caiming Xiong · Richard Socher · Kyunghyun Cho · Krzysztof J Geras -
2021 Poster: Continuous Coordination As a Realistic Scenario for Lifelong Learning »
Hadi Nekoei · Akilesh Badrinaaraayanan · Aaron Courville · Sarath Chandar -
2021 Spotlight: Continuous Coordination As a Realistic Scenario for Lifelong Learning »
Hadi Nekoei · Akilesh Badrinaaraayanan · Aaron Courville · Sarath Chandar -
2021 Poster: MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven Reinforcement Learning »
Kevin Li · Abhishek Gupta · Ashwin D Reddy · Vitchyr Pong · Aurick Zhou · Justin Yu · Sergey Levine -
2021 Poster: Locally Persistent Exploration in Continuous Control Tasks with Sparse Rewards »
Susan Amin · Maziar Gomrokchi · Hossein Aboutalebi · Harsh Satija · Doina Precup -
2021 Poster: A Deep Reinforcement Learning Approach to Marginalized Importance Sampling with the Successor Representation »
Scott Fujimoto · David Meger · Doina Precup -
2021 Spotlight: MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven Reinforcement Learning »
Kevin Li · Abhishek Gupta · Ashwin D Reddy · Vitchyr Pong · Aurick Zhou · Justin Yu · Sergey Levine -
2021 Spotlight: A Deep Reinforcement Learning Approach to Marginalized Importance Sampling with the Successor Representation »
Scott Fujimoto · David Meger · Doina Precup -
2021 Spotlight: Locally Persistent Exploration in Continuous Control Tasks with Sparse Rewards »
Susan Amin · Maziar Gomrokchi · Hossein Aboutalebi · Harsh Satija · Doina Precup -
2021 Poster: Preferential Temporal Difference Learning »
Nishanth Anand · Doina Precup -
2021 Spotlight: Preferential Temporal Difference Learning »
Nishanth Anand · Doina Precup -
2020 : Concluding Remarks »
Sarath Chandar · Shagun Sodhani -
2020 : Panel Discussion »
Eric Eaton · Martha White · Doina Precup · Irina Rish · Harm van Seijen -
2020 : Q&A by Rich Sutton »
Richard Sutton · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Irina Rish »
Irina Rish · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Jürgen Schmidhuber »
Jürgen Schmidhuber · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Partha Pratim Talukdar »
Partha Talukdar · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Katja Hoffman »
Katja Hofmann · Luisa Zintgraf · Rika Antonova · Sarath Chandar · Shagun Sodhani -
2020 Workshop: 4th Lifelong Learning Workshop »
Shagun Sodhani · Sarath Chandar · Balaraman Ravindran · Doina Precup -
2020 : Opening Comments »
Sarath Chandar · Shagun Sodhani -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Fast Adaptation to New Environments via Policy-Dynamics Value Functions »
Roberta Raileanu · Max Goldstein · Arthur Szlam · Facebook Rob Fergus -
2020 Poster: Interference and Generalization in Temporal Difference Learning »
Emmanuel Bengio · Joelle Pineau · Doina Precup -
2020 Poster: What can I do here? A Theory of Affordances in Reinforcement Learning »
Khimya Khetarpal · Zafarali Ahmed · Gheorghe Comanici · David Abel · Doina Precup -
2020 Poster: Invariant Causal Prediction for Block MDPs »
Amy Zhang · Clare Lyle · Shagun Sodhani · Angelos Filos · Marta Kwiatkowska · Joelle Pineau · Yarin Gal · Doina Precup -
2020 : Mentoring Panel: Doina Precup, Deborah Raji, Anima Anandkumar, Angjoo Kanazawa and Sinead Williamson (moderator). »
Doina Precup · Inioluwa Raji · Angjoo Kanazawa · Sinead A Williamson · Animashree Anandkumar -
2020 : Invited Talk: Doina Precup on Building Knowledge for AI Agents with Reinforcement Learning »
Doina Precup -
2019 : Chelsea Finn: "A Practical View on Generalization and Autonomy in the Real World" »
Chelsea Finn -
2019 : Meta-Learning: Challenges and Frontiers (Chelsea Finn) »
Chelsea Finn -
2019 Workshop: ICML Workshop on Imitation, Intent, and Interaction (I3) »
Nicholas Rhinehart · Sergey Levine · Chelsea Finn · He He · Ilya Kostrikov · Justin Fu · Siddharth Reddy -
2019 : Panel Discussion (Nati Srebro, Dan Roy, Chelsea Finn, Mikhail Belkin, Aleksander Mądry, Jason Lee) »
Nati Srebro · Daniel Roy · Chelsea Finn · Mikhail Belkin · Aleksander Madry · Jason Lee -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 : Keynote by Chelsea Finn: Training for Generalization »
Chelsea Finn -
2019 Workshop: Generative Modeling and Model-Based Reasoning for Robotics and AI »
Aravind Rajeswaran · Emanuel Todorov · Igor Mordatch · William Agnew · Amy Zhang · Joelle Pineau · Michael Chang · Dumitru Erhan · Sergey Levine · Kimberly Stachenfeld · Marvin Zhang -
2019 Poster: Non-Monotonic Sequential Text Generation »
Sean Welleck · Kiante Brantley · Hal Daumé III · Kyunghyun Cho -
2019 Oral: Non-Monotonic Sequential Text Generation »
Sean Welleck · Kiante Brantley · Hal Daumé III · Kyunghyun Cho -
2019 Poster: Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables »
Kate Rakelly · Aurick Zhou · Chelsea Finn · Sergey Levine · Deirdre Quillen -
2019 Oral: Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables »
Kate Rakelly · Aurick Zhou · Chelsea Finn · Sergey Levine · Deirdre Quillen -
2019 Poster: Off-Policy Deep Reinforcement Learning without Exploration »
Scott Fujimoto · David Meger · Doina Precup -
2019 Poster: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Poster: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2019 Oral: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Oral: Off-Policy Deep Reinforcement Learning without Exploration »
Scott Fujimoto · David Meger · Doina Precup -
2019 Oral: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2019 Tutorial: Meta-Learning: from Few-Shot Learning to Rapid Reinforcement Learning »
Chelsea Finn · Sergey Levine -
2018 Poster: Modeling Others using Oneself in Multi-Agent Reinforcement Learning »
Roberta Raileanu · Emily Denton · Arthur Szlam · Facebook Rob Fergus -
2018 Poster: Composable Planning with Attributes »
Amy Zhang · Sainbayar Sukhbaatar · Adam Lerer · Arthur Szlam · Facebook Rob Fergus -
2018 Poster: Convergent Tree Backup and Retrace with Function Approximation »
Ahmed Touati · Pierre-Luc Bacon · Doina Precup · Pascal Vincent -
2018 Oral: Composable Planning with Attributes »
Amy Zhang · Sainbayar Sukhbaatar · Adam Lerer · Arthur Szlam · Facebook Rob Fergus -
2018 Oral: Modeling Others using Oneself in Multi-Agent Reinforcement Learning »
Roberta Raileanu · Emily Denton · Arthur Szlam · Facebook Rob Fergus -
2018 Oral: Convergent Tree Backup and Retrace with Function Approximation »
Ahmed Touati · Pierre-Luc Bacon · Doina Precup · Pascal Vincent -
2018 Poster: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Poster: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2017 : Panel Discussion »
Balaraman Ravindran · Chelsea Finn · Alessandro Lazaric · Katja Hofmann · Marc Bellemare -
2017 : Talk »
Chelsea Finn -
2017 : Some experiments with learning hyperparameters, transfer, and multi-task leaning »
Balaraman Ravindran -
2017 Workshop: Reinforcement Learning Workshop »
Doina Precup · Balaraman Ravindran · Pierre-Luc Bacon -
2017 : Lifelong Learning - Panel Discussion »
Sergey Levine · Joelle Pineau · Balaraman Ravindran · Andrei A Rusu -
2017 : Andrei Rusu: Sequential Learning in Complex Environments »
Andrei A Rusu -
2017 Workshop: Lifelong Learning: A Reinforcement Learning Approach »
Sarath Chandar · Balaraman Ravindran · Daniel J. Mankowitz · Shie Mannor · Tom Zahavy -
2017 Poster: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Poster: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner -
2017 Talk: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner -
2017 Talk: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Tutorial: Deep Reinforcement Learning, Decision Making, and Control »
Sergey Levine · Chelsea Finn