Timezone: »
Graph-structured representations are widely used as a natural and powerful way to encode information such as relations between objects or entities, interactions between online users (e.g., in social networks), 3D meshes in computer graphics, multi-agent environments, as well as molecular structures, to name a few. Learning and reasoning with graph-structured representations is gaining increasing interest in both academia and industry, due to its fundamental advantages over more traditional unstructured methods in supporting interpretability, causality, transferability, etc. Recently, there is a surge of new techniques in the context of deep learning, such as graph neural networks, for learning graph representations and performing reasoning and prediction, which have achieved impressive progress. However, it can still be a long way to go to obtain satisfactory results in long-range multi-step reasoning, scalable learning with very large graphs, flexible modeling of graphs in combination with other dimensions such as temporal variation and other modalities such as language and vision. New advances in theoretical foundations, models and algorithms, as well as empirical discoveries and applications are therefore all highly desirable.
The aims of this workshop are to bring together researchers to dive deeply into some of the most promising methods which are under active exploration today, discuss how we can design new and better benchmarks, identify impactful application domains, encourage discussion and foster collaboration. The workshop will feature speakers, panelists, and poster presenters from machine perception, natural language processing, multi-agent behavior and communication, meta-learning, planning, and reinforcement learning, covering approaches which include (but are not limited to):
-Deep learning methods on graphs/manifolds/relational data (e.g., graph neural networks)
-Deep generative models of graphs (e.g., for drug design)
-Unsupervised graph/manifold/relational embedding methods (e.g., hyperbolic embeddings)
-Optimization methods for graphs/manifolds/relational data
-Relational or object-level reasoning in machine perception
-Relational/structured inductive biases for reinforcement learning, modeling multi-agent behavior and communication
-Neural-symbolic integration
-Theoretical analysis of capacity/generalization of deep learning models for graphs/manifolds/ relational data
-Benchmark datasets and evaluation metrics
Sat 8:45 a.m. - 9:00 a.m.
|
Opening remarks
(
NA
)
|
🔗 |
Sat 9:00 a.m. - 9:30 a.m.
|
William L. Hamilton, McGill University
(
Invited talk
)
|
Will Hamilton 🔗 |
Sat 9:30 a.m. - 9:45 a.m.
|
Evolutionary Representation Learning for Dynamic Graphs; Aynaz Taheri and Tanya Berger-Wolf
(
Contributed talk
)
|
aynaz taheri 🔗 |
Sat 9:45 a.m. - 10:00 a.m.
|
Poster spotlights #1
(
Spotlight talks
)
|
Siheng Chen · Vedran Hadziosmanovic · Adín Ramírez Rivera 🔗 |
Sat 10:00 a.m. - 11:00 a.m.
|
Morning poster session and coffee break
(
Posters
)
|
🔗 |
Sat 11:00 a.m. - 11:30 a.m.
|
Marwin Segler, Benevolent AI
(
Invited talk
)
|
Marwin Segler 🔗 |
Sat 11:30 a.m. - 12:00 p.m.
|
Yaron Lipman, Weizmann Institute of Science
(
Invited talk
)
|
Yaron Lipman 🔗 |
Sat 12:00 p.m. - 12:15 p.m.
|
PAN: Path Integral Based Convolution for Deep Graph Neural Networks; Zheng Ma, Ming Li and Yu Guang Wang
(
Contributed talk
)
|
Zheng Ma 🔗 |
Sat 12:15 p.m. - 12:30 p.m.
|
Poster spotlights #2
(
Spotlight talks
)
|
Leonardo Teixeira · Federico Baldassarre 🔗 |
Sat 12:30 p.m. - 2:00 p.m.
|
Lunch break
|
🔗 |
Sat 2:00 p.m. - 2:30 p.m.
|
Alex Polozov, Microsoft Research
(
Invited talk
)
|
Alex Polozov 🔗 |
Sat 2:30 p.m. - 3:00 p.m.
|
Sanja Fidler, University of Toronto
(
Invited talk
)
|
Sanja Fidler 🔗 |
Sat 3:00 p.m. - 3:15 p.m.
|
On Graph Classification Networks, Datasets and Baselines; Enxhell Luzhnica, Ben Day and Pietro Lió
(
Contributed talk
)
|
🔗 |
Sat 3:15 p.m. - 3:30 p.m.
|
Poster spotlights #3
(
Spotlight talks
)
|
Sumit Kumar · Nicola De Cao · Benson Chen 🔗 |
Sat 3:30 p.m. - 4:30 p.m.
|
Afternoon poster session and coffee break
(
Posters
)
|
Ming Tu · Xinhua Zhang · Li Chen 🔗 |
Sat 4:30 p.m. - 5:00 p.m.
|
Caroline Uhler, MIT
(
Invited talk
)
|
Caroline Uhler 🔗 |
Sat 5:00 p.m. - 5:30 p.m.
|
Alexander Schwing, University of Illinois at Urbana-Champaign
(
Invited talk
)
|
Alex Schwing 🔗 |
Author Information
Ethan Fetaya (University of Toronto)
Zhiting Hu (Carnegie Mellon University)
Thomas Kipf (University of Amsterdam)
Yujia Li (DeepMind)
Xiaodan Liang (Sun Yat-sen University)
Renjie Liao (University of Toronto)
Raquel Urtasun (University of Toronto)
Hao Wang (MIT)
Max Welling (University of Amsterdam)
Prof. Dr. Max Welling is a research chair in Machine Learning at the University of Amsterdam and a VP Technologies at Qualcomm. He has a secondary appointment as a senior fellow at the Canadian Institute for Advanced Research (CIFAR). He is co-founder of “Scyfer BV” a university spin-off in deep learning which got acquired by Qualcomm in summer 2017. In the past he held postdoctoral positions at Caltech (’98-’00), UCL (’00-’01) and the U. Toronto (’01-’03). He received his PhD in ’98 under supervision of Nobel laureate Prof. G. 't Hooft. Max Welling has served as associate editor in chief of IEEE TPAMI from 2011-2015 (impact factor 4.8). He serves on the board of the NIPS foundation since 2015 (the largest conference in machine learning) and has been program chair and general chair of NIPS in 2013 and 2014 respectively. He was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of MIDL 2018. He has served on the editorial boards of JMLR and JML and was an associate editor for Neurocomputing, JCGS and TPAMI. He received multiple grants from Google, Facebook, Yahoo, NSF, NIH, NWO and ONR-MURI among which an NSF career grant in 2005. He is recipient of the ECCV Koenderink Prize in 2010. Welling is in the board of the Data Science Research Center in Amsterdam, he directs the Amsterdam Machine Learning Lab (AMLAB), and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the Bosch-UvA Deep Learning lab (DELTA). Max Welling has over 200 scientific publications in machine learning, computer vision, statistics and physics.
Eric Xing (Petuum Inc. and CMU)
Richard Zemel (Vector Institute)
More from the Same Authors
-
2021 : Online Algorithmic Recourse by Collective Action »
Elliot Creager · Richard Zemel -
2021 : Towards Principled Disentanglement for Domain Generalization »
Hanlin Zhang · Yi-Fan Zhang · Weiyang Liu · Adrian Weller · Bernhard Schölkopf · Eric Xing -
2022 : Towards Environment-Invariant Representation Learning for Robust Task Transfer »
Benjamin Eyre · Richard Zemel · Elliot Creager -
2023 : Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift »
Benjamin Eyre · Elliot Creager · David Madras · Vardan Papyan · Richard Zemel -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Making Scalable Meta Learning Practical »
Sang Keun Choe · Sanket Vaibhav Mehta · Hwijeen Ahn · Willie Neiswanger · Pengtao Xie · Emma Strubell · Eric Xing -
2023 Workshop: Structured Probabilistic Inference and Generative Modeling »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2023 Test Of Time: Learning Fair Representations »
Richard Zemel · Yu Wu · Kevin Swersky · Toniann Pitassi · Cynthia Dwork -
2023 Oral: Equivariant Architectures for Learning in Deep Weight Spaces »
Aviv Navon · Aviv Shamsian · Idan Achituve · Ethan Fetaya · Gal Chechik · Haggai Maron -
2023 Poster: Invariant Slot Attention: Object Discovery with Slot-Centric Reference Frames »
Ondrej Biza · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gamaleldin Elsayed · Aravindh Mahendran · Thomas Kipf -
2023 Poster: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2023 Poster: Equivariant Architectures for Learning in Deep Weight Spaces »
Aviv Navon · Aviv Shamsian · Idan Achituve · Ethan Fetaya · Gal Chechik · Haggai Maron -
2023 Oral: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2023 Poster: Auxiliary Learning as an Asymmetric Bargaining Game »
Aviv Shamsian · Aviv Navon · Neta Glazer · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2023 Poster: Test-time Adaptation with Slot-Centric Models »
Mihir Prabhudesai · Anirudh Goyal · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gaurav Aggarwal · Thomas Kipf · Deepak Pathak · Katerina Fragkiadaki -
2023 Poster: Transformers Meet Directed Graphs »
Simon Markus Geisler · Yujia Li · Daniel Mankowitz · Taylan Cemgil · Stephan Günnemann · Cosmin Paduraru -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 : Invited talks 3, Q/A, Amy, Rich and Liting »
Liting Sun · Amy Zhang · Richard Zemel -
2022 : Invited talks 3, Amy Zhang, Rich Zemel and Liting Sun »
Amy Zhang · Richard Zemel · Liting Sun -
2022 Poster: Lie Point Symmetry Data Augmentation for Neural PDE Solvers »
Johannes Brandstetter · Max Welling · Daniel Worrall -
2022 Poster: Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent RL »
Siyi Hu · Chuanlong Xie · Xiaodan Liang · Xiaojun Chang -
2022 Spotlight: Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent RL »
Siyi Hu · Chuanlong Xie · Xiaodan Liang · Xiaojun Chang -
2022 Spotlight: Lie Point Symmetry Data Augmentation for Neural PDE Solvers »
Johannes Brandstetter · Max Welling · Daniel Worrall -
2022 Poster: SDQ: Stochastic Differentiable Quantization with Mixed Precision »
Xijie Huang · Zhiqiang Shen · Shichao Li · Zechun Liu · Hu Xianghong · Jeffry Wicaksana · Eric Xing · Kwang-Ting Cheng -
2022 Spotlight: SDQ: Stochastic Differentiable Quantization with Mixed Precision »
Xijie Huang · Zhiqiang Shen · Shichao Li · Zechun Liu · Hu Xianghong · Jeffry Wicaksana · Eric Xing · Kwang-Ting Cheng -
2022 Poster: Multi-Task Learning as a Bargaining Game »
Aviv Navon · Aviv Shamsian · Idan Achituve · Haggai Maron · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2022 Spotlight: Multi-Task Learning as a Bargaining Game »
Aviv Navon · Aviv Shamsian · Idan Achituve · Haggai Maron · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2021 Workshop: Self-Supervised Learning for Reasoning and Perception »
Pengtao Xie · Shanghang Zhang · Ishan Misra · Pulkit Agrawal · Katerina Fragkiadaki · Ruisi Zhang · Tassilo Klein · Asli Celikyilmaz · Mihaela van der Schaar · Eric Xing -
2021 Workshop: Workshop on Socially Responsible Machine Learning »
Chaowei Xiao · Animashree Anandkumar · Mingyan Liu · Dawn Song · Raquel Urtasun · Jieyu Zhao · Xueru Zhang · Cihang Xie · Xinyun Chen · Bo Li -
2021 : Invited Talk: Eric P. Xing. A Data-Centric View for Composable Natural Language Processing. »
Eric Xing -
2021 Workshop: Machine Learning for Data: Automated Creation, Privacy, Bias »
Zhiting Hu · Li Erran Li · Willie Neiswanger · Benedikt Boecking · Yi Xu · Belinda Zeng -
2021 Workshop: Interpretable Machine Learning in Healthcare »
Yuyin Zhou · Xiaoxiao Li · Vicky Yao · Pengtao Xie · DOU QI · Nicha Dvornek · Julia Schnabel · Judy Wawira · Yifan Peng · Ronald Summers · Alan Karthikesalingam · Lei Xing · Eric Xing -
2021 Poster: GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning »
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya -
2021 Spotlight: GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning »
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya -
2021 Test Of Time: Test of Time Award »
Max Welling · Max Welling -
2021 Poster: SparseBERT: Rethinking the Importance Analysis in Self-attention »
Han Shi · Jiahui Gao · Xiaozhe Ren · Hang Xu · Xiaodan Liang · Zhenguo Li · James Kwok -
2021 Poster: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Poster: Personalized Federated Learning using Hypernetworks »
Aviv Shamsian · Aviv Navon · Ethan Fetaya · Gal Chechik -
2021 Poster: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Poster: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Spotlight: Learning a Universal Template for Few-shot Dataset Generalization »
Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin -
2021 Spotlight: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Spotlight: Personalized Federated Learning using Hypernetworks »
Aviv Shamsian · Aviv Navon · Ethan Fetaya · Gal Chechik -
2021 Spotlight: SketchEmbedNet: Learning Novel Concepts by Imitating Drawings »
Alexander Wang · Mengye Ren · Richard Zemel -
2021 Spotlight: SparseBERT: Rethinking the Importance Analysis in Self-attention »
Han Shi · Jiahui Gao · Xiaozhe Ren · Hang Xu · Xiaodan Liang · Zhenguo Li · James Kwok -
2021 Poster: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Oral: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Marc Finzi · Max Welling · Andrew Wilson -
2021 Poster: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2021 Poster: From Local Structures to Size Generalization in Graph Neural Networks »
Gilad Yehudai · Ethan Fetaya · Eli Meirom · Gal Chechik · Haggai Maron -
2021 Spotlight: On Monotonic Linear Interpolation of Neural Network Parameters »
James Lucas · Juhan Bae · Michael Zhang · Stanislav Fort · Richard Zemel · Roger Grosse -
2021 Spotlight: From Local Structures to Size Generalization in Graph Neural Networks »
Gilad Yehudai · Ethan Fetaya · Eli Meirom · Gal Chechik · Haggai Maron -
2020 : Invited Talk 4: Prof. Richard Zemel from University of Toronto »
Richard Zemel -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Keynote #4 Raquel Urtasun »
Raquel Urtasun -
2020 : Attentive Grouping and Graph Neural Networks for Object-Centric Learning »
Thomas Kipf -
2020 Workshop: Participatory Approaches to Machine Learning »
Angela Zhou · David Madras · Deborah Raji · Smitha Milli · Bogdan Kulynych · Richard Zemel -
2020 : Invited Talk: Thomas Kipf »
Thomas Kipf -
2020 Poster: Latent Variable Modelling with Hyperbolic Normalizing Flows »
Joey Bose · Ariella Smofsky · Renjie Liao · Prakash Panangaden · Will Hamilton -
2020 Poster: Causal Modeling for Fairness In Dynamical Systems »
Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel -
2020 Poster: Continuously Indexed Domain Adaptation »
Hao Wang · Hao He · Dina Katabi -
2020 Poster: On Learning Sets of Symmetric Elements »
Haggai Maron · Or Litany · Gal Chechik · Ethan Fetaya -
2020 Poster: Scalable Deep Generative Modeling for Sparse Graphs »
Hanjun Dai · Azade Nova · Yujia Li · Bo Dai · Dale Schuurmans -
2020 Poster: Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach »
Martin Mladenov · Elliot Creager · Omer Ben-Porat · Kevin Swersky · Richard Zemel · Craig Boutilier -
2020 Poster: Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling »
Will Grathwohl · Kuan-Chieh Wang · Joern-Henrik Jacobsen · David Duvenaud · Richard Zemel -
2019 Workshop: Adaptive and Multitask Learning: Algorithms & Systems »
Maruan Al-Shedivat · Anthony Platanios · Otilia Stretcu · Jacob Andreas · Ameet Talwalkar · Rich Caruana · Tom Mitchell · Eric Xing -
2019 Poster: Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement »
Wouter Kool · Herke van Hoof · Max Welling -
2019 Poster: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Poster: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Oral: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement »
Wouter Kool · Herke van Hoof · Max Welling -
2019 Poster: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Poster: Theoretically Principled Trade-off between Robustness and Accuracy »
Hongyang Zhang · Yaodong Yu · Jiantao Jiao · Eric Xing · Laurent El Ghaoui · Michael Jordan -
2019 Poster: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Oral: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Oral: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Oral: Theoretically Principled Trade-off between Robustness and Accuracy »
Hongyang Zhang · Yaodong Yu · Jiantao Jiao · Eric Xing · Laurent El Ghaoui · Michael Jordan -
2019 Poster: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2019 Poster: Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching »
Ziliang Chen · ZHANFU YANG · Xiaoxi Wang · Xiaodan Liang · xiaopeng yan · Guanbin Li · Liang Lin -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2019 Oral: Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching »
Ziliang Chen · ZHANFU YANG · Xiaoxi Wang · Xiaodan Liang · xiaopeng yan · Guanbin Li · Liang Lin -
2018 Poster: Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis »
Pengtao Xie · Wei Wu · Yichen Zhu · Eric Xing -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis »
Pengtao Xie · Wei Wu · Yichen Zhu · Eric Xing -
2018 Oral: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Learning to Reweight Examples for Robust Deep Learning »
Mengye Ren · Wenyuan Zeng · Bin Yang · Raquel Urtasun -
2018 Poster: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Poster: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · Kijung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Oral: Learning to Reweight Examples for Robust Deep Learning »
Mengye Ren · Wenyuan Zeng · Bin Yang · Raquel Urtasun -
2018 Invited Talk: Intelligence per Kilowatthour »
Max Welling -
2018 Poster: Nonoverlap-Promoting Variable Selection »
Pengtao Xie · Hongbao Zhang · Yichen Zhu · Eric Xing -
2018 Poster: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Poster: BOCK : Bayesian Optimization with Cylindrical Kernels »
ChangYong Oh · Efstratios Gavves · Max Welling -
2018 Poster: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2018 Poster: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Oral: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: BOCK : Bayesian Optimization with Cylindrical Kernels »
ChangYong Oh · Efstratios Gavves · Max Welling -
2018 Oral: Nonoverlap-Promoting Variable Selection »
Pengtao Xie · Hongbao Zhang · Yichen Zhu · Eric Xing -
2018 Oral: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2017 Workshop: ICML Workshop on Machine Learning for Autonomous Vehicles 2017 »
Li Erran Li · Raquel Urtasun · Andrew Gray · Silvio Savarese -
2017 Poster: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel -
2017 Poster: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks »
Christos Louizos · Max Welling -
2017 Poster: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Talk: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Talk: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks »
Christos Louizos · Max Welling -
2017 Poster: Uncorrelation and Evenness: a New Diversity-Promoting Regularizer »
Pengtao Xie · Aarti Singh · Eric Xing -
2017 Poster: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Uncorrelation and Evenness: a New Diversity-Promoting Regularizer »
Pengtao Xie · Aarti Singh · Eric Xing -
2017 Talk: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel -
2017 Poster: Post-Inference Prior Swapping »
Willie Neiswanger · Eric Xing -
2017 Talk: Post-Inference Prior Swapping »
Willie Neiswanger · Eric Xing -
2017 Tutorial: Machine Learning for Autonomous Vehicles »
Raquel Urtasun · Andrew Gray · Carl Wellington