Timezone: »

 
Workshop
Uncertainty and Robustness in Deep Learning
Sharon Yixuan Li · Dan Hendrycks · Thomas Dietterich · Balaji Lakshminarayanan · Justin Gilmer

Fri Jun 14 08:30 AM -- 06:00 PM (PDT) @ Hall B
Event URL: https://sites.google.com/view/udlworkshop2019/home »

There has been growing interest in rectifying deep neural network vulnerabilities. Challenges arise when models receive samples drawn from outside the training distribution. For example, a neural network tasked with classifying handwritten digits may assign high confidence predictions to cat images. Anomalies are frequently encountered when deploying ML models in the real world. Well-calibrated predictive uncertainty estimates are indispensable for many machine learning applications, such as self-driving cars and medical diagnosis systems. Generalization to unseen and worst-case inputs is also essential for robustness to distributional shift. In order to have ML models reliably predict in open environment, we must deepen technical understanding in the following areas: (1) learning algorithms that are robust to changes in input data distribution (e.g., detect out-of-distribution examples); (2) mechanisms to estimate and calibrate confidence produced by neural networks and (3) methods to improve robustness to adversarial and common corruptions, and (4) key applications for uncertainty such as in artificial intelligence (e.g., computer vision, robotics, self-driving cars, medical imaging) as well as broader machine learning tasks.

This workshop will bring together researchers and practitioners from the machine learning communities, and highlight recent work that contribute to address these challenges. Our agenda will feature contributed papers with invited speakers. Through the workshop we hope to help identify fundamentally important directions on robust and reliable deep learning, and foster future collaborations.

Author Information

Sharon Yixuan Li (Facebook AI)

Sharon Y. Li is currently a postdoc researcher in the Computer Science department at Stanford, working with Chris Ré. She will be joining the Computer Sciences Department at University of Wisconsin Madison as an assistant professor, starting in Fall 2020. Previously, she completed her PhD from Cornell University in 2017, where she was advised by John E. Hopcroft. Her thesis committee members are Kilian Q. Weinberger and Thorsten Joachims. She has spent time at Google AI twice as an intern, and Facebook AI as a Research Scientist. She was named Forbes 30 Under 30 in Science in 2020. Her principal research interests are in the algorithmic foundations of deep learning and its applications. Her time in both academia and industry has shaped my view and approach in research. She is particularly excited about developing open-world machine learning methods that can reduce human supervision during training, and enhance reliability during deployment.

Dan Hendrycks (UC Berkeley)
Thomas Dietterich (Oregon State University)
Balaji Lakshminarayanan (Google DeepMind)
Justin Gilmer (Google Brain)

More from the Same Authors