Timezone: »
Oral
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
Xiao Zhang · Simon Du · Quanquan Gu
We revisit the inductive matrix completion problem that aims to recover a rank-$r$ matrix with ambient dimension $d$ given $n$ features as the side prior information. The goal is to make use of the known $n$ features to reduce sample and computational complexities. We present and analyze a new gradient-based non-convex optimization algorithm that converges to the true underlying matrix at a linear rate with sample complexity only linearly depending on $n$ and logarithmically depending on $d$. To the best of our knowledge, all previous algorithms either have a quadratic dependency on the number of features in sample complexity or a sub-linear computational convergence rate. In addition, we provide experiments on both synthetic and real world data to demonstrate the effectiveness of our proposed algorithm.
Author Information
Xiao Zhang (University of Virginia)
Simon Du (Carnegie Mellon University)
Quanquan Gu (UCLA)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #78
More from the Same Authors
-
2020 Poster: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization »
Sicheng Zhu · Xiao Zhang · David Evans -
2019 Poster: Width Provably Matters in Optimization for Deep Linear Neural Networks »
Simon Du · Wei Hu -
2019 Oral: Width Provably Matters in Optimization for Deep Linear Neural Networks »
Simon Du · Wei Hu -
2019 Poster: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Poster: Gradient Descent Finds Global Minima of Deep Neural Networks »
Simon Du · Jason Lee · Haochuan Li · Liwei Wang · Xiyu Zhai -
2019 Poster: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang -
2019 Oral: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Oral: Gradient Descent Finds Global Minima of Deep Neural Networks »
Simon Du · Jason Lee · Haochuan Li · Liwei Wang · Xiyu Zhai -
2019 Oral: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang -
2018 Poster: On the Power of Over-parametrization in Neural Networks with Quadratic Activation »
Simon Du · Jason Lee -
2018 Poster: Continuous and Discrete-time Accelerated Stochastic Mirror Descent for Strongly Convex Functions »
Pan Xu · Tianhao Wang · Quanquan Gu -
2018 Oral: Continuous and Discrete-time Accelerated Stochastic Mirror Descent for Strongly Convex Functions »
Pan Xu · Tianhao Wang · Quanquan Gu -
2018 Oral: On the Power of Over-parametrization in Neural Networks with Quadratic Activation »
Simon Du · Jason Lee -
2018 Poster: Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima »
Simon Du · Jason Lee · Yuandong Tian · Aarti Singh · Barnabás Póczos -
2018 Poster: Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms »
Yi Wu · Siddharth Srivastava · Nicholas Hay · Simon Du · Stuart Russell -
2018 Poster: A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery »
Xiao Zhang · Lingxiao Wang · Yaodong Yu · Quanquan Gu -
2018 Poster: Stochastic Variance-Reduced Hamilton Monte Carlo Methods »
Difan Zou · Pan Xu · Quanquan Gu -
2018 Oral: Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms »
Yi Wu · Siddharth Srivastava · Nicholas Hay · Simon Du · Stuart Russell -
2018 Oral: Stochastic Variance-Reduced Hamilton Monte Carlo Methods »
Difan Zou · Pan Xu · Quanquan Gu -
2018 Oral: Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima »
Simon Du · Jason Lee · Yuandong Tian · Aarti Singh · Barnabás Póczos -
2018 Oral: A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery »
Xiao Zhang · Lingxiao Wang · Yaodong Yu · Quanquan Gu -
2018 Poster: Stochastic Variance-Reduced Cubic Regularized Newton Method »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Poster: Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization »
Jinghui Chen · Pan Xu · Lingxiao Wang · Jian Ma · Quanquan Gu -
2018 Oral: Stochastic Variance-Reduced Cubic Regularized Newton Method »
Dongruo Zhou · Pan Xu · Quanquan Gu -
2018 Oral: Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization »
Jinghui Chen · Pan Xu · Lingxiao Wang · Jian Ma · Quanquan Gu -
2017 Poster: Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference »
Aditya Chaudhry · Pan Xu · Quanquan Gu -
2017 Poster: High-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm »
Rongda Zhu · Lingxiao Wang · Chengxiang Zhai · Quanquan Gu -
2017 Poster: Robust Gaussian Graphical Model Estimation with Arbitrary Corruption »
Lingxiao Wang · Quanquan Gu -
2017 Talk: High-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm »
Rongda Zhu · Lingxiao Wang · Chengxiang Zhai · Quanquan Gu -
2017 Talk: Robust Gaussian Graphical Model Estimation with Arbitrary Corruption »
Lingxiao Wang · Quanquan Gu -
2017 Talk: Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference »
Aditya Chaudhry · Pan Xu · Quanquan Gu -
2017 Poster: A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery »
Lingxiao Wang · Xiao Zhang · Quanquan Gu -
2017 Poster: Stochastic Variance Reduction Methods for Policy Evaluation »
Simon Du · Jianshu Chen · Lihong Li · Lin Xiao · Dengyong Zhou -
2017 Talk: Stochastic Variance Reduction Methods for Policy Evaluation »
Simon Du · Jianshu Chen · Lihong Li · Lin Xiao · Dengyong Zhou -
2017 Talk: A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery »
Lingxiao Wang · Xiao Zhang · Quanquan Gu