Timezone: »
Oral
Stein Points
Wilson Ye Chen · Lester Mackey · Jackson Gorham · Francois-Xavier Briol · Chris J Oates
An important task in computational statistics and machine learning is to approximate a posterior distribution p(x) with an empirical measure supported on a set of representative points {x_i\}_{i=1}^n. This paper focuses on methods where the selection of points is essentially deterministic, with an emphasis on achieving accurate approximation when $n$ is small.To this end, we present Stein Points. The idea is to exploit either a greedy or a conditional gradient method to iteratively minimise a kernel Stein discrepancy between the empirical measure and p(x). Our empirical results demonstrate that Stein Points enable accurate approximation of the posterior at modest computational cost. In addition, theoretical results are provided to establish convergence of the method.
Author Information
Wilson Ye Chen (University of Technology Sydney)
Lester Mackey (Microsoft Research)
Jackson Gorham (STANFORD)
Francois-Xavier Briol (University of Warwick)
Chris J Oates (Newcastle University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Stein Points »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #1
More from the Same Authors
-
2021 : SNoB: Social Norm Bias of “Fair” Algorithms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2021 : Are You Man Enough? Even Fair Algorithms Conform to Societal Norms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2023 : Adaptive Bias Correction for Improved Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 Poster: Scalable Spike-and-Slab »
Niloy Biswas · Lester Mackey · Xiao-Li Meng -
2022 Spotlight: Scalable Spike-and-Slab »
Niloy Biswas · Lester Mackey · Xiao-Li Meng -
2021 : Lester Mackey: Online Learning with Optimism and Delay »
Lester Mackey -
2019 Workshop: Stein’s Method for Machine Learning and Statistics »
Francois-Xavier Briol · Lester Mackey · Chris Oates · Qiang Liu · Larry Goldstein · Larry Goldstein -
2019 Poster: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2019 Oral: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2018 Poster: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Poster: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Oral: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Oral: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Poster: Bayesian Quadrature for Multiple Related Integrals »
Xiaoyue Xi · Francois-Xavier Briol · Mark Girolami -
2018 Oral: Bayesian Quadrature for Multiple Related Integrals »
Xiaoyue Xi · Francois-Xavier Briol · Mark Girolami -
2017 Poster: Measuring Sample Quality with Kernels »
Jackson Gorham · Lester Mackey -
2017 Poster: On the Sampling Problem for Kernel Quadrature »
Francois-Xavier Briol · Chris J Oates · Jon Cockayne · Wilson Ye Chen · Mark Girolami -
2017 Talk: Measuring Sample Quality with Kernels »
Jackson Gorham · Lester Mackey -
2017 Talk: On the Sampling Problem for Kernel Quadrature »
Francois-Xavier Briol · Chris J Oates · Jon Cockayne · Wilson Ye Chen · Mark Girolami