Timezone: »
While Generative Adversarial Networks (GANs) have demonstrated promising performance on multiple vision tasks, their learning dynamics are not yet well understood, both in theory and in practice.To address this issue, we study GAN dynamics in a simple yet rich parametric model that exhibits several of the common problematic convergence behaviors such as vanishing gradients, mode collapse, and diverging or oscillatory behavior.In spite of the non-convex nature of our model, we are able to perform a rigorous theoretical analysis of its convergence behavior.Our analysis reveals an interesting dichotomy: a GAN with an optimal discriminator provably converges, while first order approximations of the discriminator steps lead to unstable GAN dynamics and mode collapse.Our result suggests that using first order discriminator steps (the de-facto standard in most existing GAN setups) might be one of the factors that makes GAN training challenging in practice.
Author Information
Jerry Li (MIT)
Aleksander Madry (MIT)
John Peebles (MIT)
Ludwig Schmidt (UC Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: On the Limitations of First-Order Approximation in GAN Dynamics »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #112
More from the Same Authors
-
2022 : A Game-Theoretic Perspective on Trust in Recommendation »
Sarah Cen · Andrew Ilyas · Aleksander Madry -
2023 Poster: Rethinking Backdoor Attacks »
Alaa Khaddaj · Guillaume Leclerc · Aleksandar Makelov · Kristian Georgiev · Andrew Ilyas · Hadi Salman · Aleksander Madry -
2023 Poster: Raising the Cost of Malicious AI-Powered Image Editing »
Hadi Salman · Alaa Khaddaj · Guillaume Leclerc · Andrew Ilyas · Aleksander Madry -
2023 Poster: TRAK: Understanding Model Predictions at Scale »
Sung Min (Sam) Park · Kristian Georgiev · Andrew Ilyas · Guillaume Leclerc · Aleksander Madry -
2023 Poster: ModelDiff: A Framework for Comparing Learning Algorithms »
Harshay Shah · Sung Min (Sam) Park · Andrew Ilyas · Aleksander Madry -
2023 Oral: Raising the Cost of Malicious AI-Powered Image Editing »
Hadi Salman · Alaa Khaddaj · Guillaume Leclerc · Andrew Ilyas · Aleksander Madry -
2023 Oral: TRAK: Understanding Model Predictions at Scale »
Sung Min (Sam) Park · Kristian Georgiev · Andrew Ilyas · Guillaume Leclerc · Aleksander Madry -
2023 Workshop: DMLR Workshop: Data-centric Machine Learning Research »
Ce Zhang · Praveen Paritosh · Newsha Ardalani · Nezihe Merve Gürel · William Gaviria Rojas · Yang Liu · Rotem Dror · Manil Maskey · Lilith Bat-Leah · Tzu-Sheng Kuo · Luis Oala · Max Bartolo · Ludwig Schmidt · Alicia Parrish · Daniel Kondermann · Najoung Kim -
2022 : Panel discussion »
Steffen Schneider · Aleksander Madry · Alexei Efros · Chelsea Finn · Soheil Feizi -
2022 : Dr. Aleksander Madry's Talk »
Aleksander Madry -
2022 : Invited Talk 1: Aleksander Mądry »
Aleksander Madry -
2022 Poster: Datamodels: Understanding Predictions with Data and Data with Predictions »
Andrew Ilyas · Sung Min (Sam) Park · Logan Engstrom · Guillaume Leclerc · Aleksander Madry -
2022 Poster: Adversarially trained neural representations are already as robust as biological neural representations »
Chong Guo · Michael Lee · Guillaume Leclerc · Joel Dapello · Yug Rao · Aleksander Madry · James DiCarlo -
2022 Oral: Adversarially trained neural representations are already as robust as biological neural representations »
Chong Guo · Michael Lee · Guillaume Leclerc · Joel Dapello · Yug Rao · Aleksander Madry · James DiCarlo -
2022 Spotlight: Datamodels: Understanding Predictions with Data and Data with Predictions »
Andrew Ilyas · Sung Min (Sam) Park · Logan Engstrom · Guillaume Leclerc · Aleksander Madry -
2022 Poster: Combining Diverse Feature Priors »
Saachi Jain · Dimitris Tsipras · Aleksander Madry -
2022 Spotlight: Combining Diverse Feature Priors »
Saachi Jain · Dimitris Tsipras · Aleksander Madry -
2021 : Invited Talk #4 »
Aleksander Madry -
2021 Poster: Leveraging Sparse Linear Layers for Debuggable Deep Networks »
Eric Wong · Shibani Santurkar · Aleksander Madry -
2021 Oral: Leveraging Sparse Linear Layers for Debuggable Deep Networks »
Eric Wong · Shibani Santurkar · Aleksander Madry -
2020 Poster: From ImageNet to Image Classification: Contextualizing Progress on Benchmarks »
Dimitris Tsipras · Shibani Santurkar · Logan Engstrom · Andrew Ilyas · Aleksander Madry -
2020 Poster: Identifying Statistical Bias in Dataset Replication »
Logan Engstrom · Andrew Ilyas · Shibani Santurkar · Dimitris Tsipras · Jacob Steinhardt · Aleksander Madry -
2019 Workshop: Identifying and Understanding Deep Learning Phenomena »
Hanie Sedghi · Samy Bengio · Kenji Hata · Aleksander Madry · Ari Morcos · Behnam Neyshabur · Maithra Raghu · Ali Rahimi · Ludwig Schmidt · Ying Xiao -
2019 : Panel Discussion (Nati Srebro, Dan Roy, Chelsea Finn, Mikhail Belkin, Aleksander Mądry, Jason Lee) »
Nati Srebro · Daniel Roy · Chelsea Finn · Mikhail Belkin · Aleksander Madry · Jason Lee -
2019 : Keynote by Aleksander Mądry: Are All Features Created Equal? »
Aleksander Madry -
2019 Poster: Sever: A Robust Meta-Algorithm for Stochastic Optimization »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Jacob Steinhardt · Alistair Stewart -
2019 Poster: Exploring the Landscape of Spatial Robustness »
Logan Engstrom · Brandon Tran · Dimitris Tsipras · Ludwig Schmidt · Aleksander Madry -
2019 Oral: Sever: A Robust Meta-Algorithm for Stochastic Optimization »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Jacob Steinhardt · Alistair Stewart -
2019 Oral: Exploring the Landscape of Spatial Robustness »
Logan Engstrom · Brandon Tran · Dimitris Tsipras · Ludwig Schmidt · Aleksander Madry -
2018 Poster: A Classification-Based Study of Covariate Shift in GAN Distributions »
Shibani Santurkar · Ludwig Schmidt · Aleksander Madry -
2018 Oral: A Classification-Based Study of Covariate Shift in GAN Distributions »
Shibani Santurkar · Ludwig Schmidt · Aleksander Madry -
2017 Poster: Being Robust (in High Dimensions) Can Be Practical »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Ankur Moitra · Alistair Stewart -
2017 Poster: ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning »
Hantian Zhang · Jerry Li · Kaan Kara · Dan Alistarh · Ji Liu · Ce Zhang -
2017 Talk: ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning »
Hantian Zhang · Jerry Li · Kaan Kara · Dan Alistarh · Ji Liu · Ce Zhang -
2017 Talk: Being Robust (in High Dimensions) Can Be Practical »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Ankur Moitra · Alistair Stewart