Timezone: »

 
Oral
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
Yoonho Lee · Seungjin Choi

Fri Jul 13 07:50 AM -- 08:00 AM (PDT) @ Victoria

Gradient-based meta-learning methods leverage gradient descent to learn the commonalities among various tasks.While previous such methods have been successful in meta-learning tasks, they resort to simple gradient descent during meta-testing.Our primary contribution is the {\em MT-net}, which enables the meta-learner to learn on each layer's activation space a subspace that the task-specific learner performs gradient descent on.Additionally, a task-specific learner of an {\em MT-net} performs gradient descent with respect to a meta-learned distance metric,which warps the activation space to be more sensitive to task identity.We demonstrate that the dimension of this learned subspace reflects the complexity of the task-specific learner's adaptation task, and also that our model is less sensitive to the choice of initial learning rates than previous gradient-based meta-learning methods.Our method achieves state-of-the-art or comparable performance on few-shot classification and regression tasks.

Author Information

Yoonho Lee (Pohang University of Science and Techonology)
Seungjin Choi (POSTECH)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2019 : Poster Session 1 (all papers) »
    Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · wenwu zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel
  • 2019 Poster: Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks »
    Juho Lee · Yoonho Lee · Jungtaek Kim · Adam Kosiorek · Seungjin Choi · Yee-Whye Teh
  • 2019 Oral: Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks »
    Juho Lee · Yoonho Lee · Jungtaek Kim · Adam Kosiorek · Seungjin Choi · Yee-Whye Teh
  • 2017 Poster: Bayesian inference on random simple graphs with power law degree distributions »
    Juho Lee · Creighton Heaukulani · Zoubin Ghahramani · Lancelot F. James · Seungjin Choi
  • 2017 Talk: Bayesian inference on random simple graphs with power law degree distributions »
    Juho Lee · Creighton Heaukulani · Zoubin Ghahramani · Lancelot F. James · Seungjin Choi