Timezone: »
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the low variance benefits of EPG in a broad range of settings. For the critic, we treat trigonometric and radial basis functions, two function families with the universal approximation property. The choice of policy can be almost arbitrary, including mixtures or hybrid continuous-discrete probability distributions. Moreover, we derive a general family of sample-based estimators for stochastic policy gradients, which unifies existing results on sample-based approximation. We believe that this technique has the potential to shape the next generation of policy gradient approaches, powered by analytical results.
Author Information
Matthew Fellows (University of Oxford)
Kamil Ciosek (Oxford)
Shimon Whiteson (University of Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Fourier Policy Gradients »
Fri Jul 13th 04:15 -- 07:00 PM Room Hall B
More from the Same Authors
-
2020 Poster: Provably Convergent Two-Timescale Off-Policy Actor-Critic with Function Approximation »
Shangtong Zhang · Bo Liu · Hengshuai Yao · Shimon Whiteson -
2020 Poster: Deep Coordination Graphs »
Wendelin Boehmer · Vitaly Kurin · Shimon Whiteson -
2020 Poster: GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values »
Shangtong Zhang · Bo Liu · Shimon Whiteson -
2019 Poster: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Oral: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Poster: A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs »
Jingkai Mao · Jakob Foerster · Tim Rocktäschel · Maruan Al-Shedivat · Gregory Farquhar · Shimon Whiteson -
2019 Poster: Fast Context Adaptation via Meta-Learning »
Luisa Zintgraf · Kyriacos Shiarlis · Vitaly Kurin · Katja Hofmann · Shimon Whiteson -
2019 Oral: A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs »
Jingkai Mao · Jakob Foerster · Tim Rocktäschel · Maruan Al-Shedivat · Gregory Farquhar · Shimon Whiteson -
2019 Oral: Fast Context Adaptation via Meta-Learning »
Luisa Zintgraf · Kyriacos Shiarlis · Vitaly Kurin · Katja Hofmann · Shimon Whiteson -
2019 Poster: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2019 Oral: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2018 Poster: QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning »
Tabish Rashid · Mikayel Samvelyan · Christian Schroeder · Gregory Farquhar · Jakob Foerster · Shimon Whiteson -
2018 Poster: Deep Variational Reinforcement Learning for POMDPs »
Maximilian Igl · Luisa Zintgraf · Tuan Anh Le · Frank Wood · Shimon Whiteson -
2018 Oral: Deep Variational Reinforcement Learning for POMDPs »
Maximilian Igl · Luisa Zintgraf · Tuan Anh Le · Frank Wood · Shimon Whiteson -
2018 Oral: QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning »
Tabish Rashid · Mikayel Samvelyan · Christian Schroeder · Gregory Farquhar · Jakob Foerster · Shimon Whiteson -
2018 Poster: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2018 Poster: TACO: Learning Task Decomposition via Temporal Alignment for Control »
Kyriacos Shiarlis · Markus Wulfmeier · Sasha Salter · Shimon Whiteson · Ingmar Posner -
2018 Oral: TACO: Learning Task Decomposition via Temporal Alignment for Control »
Kyriacos Shiarlis · Markus Wulfmeier · Sasha Salter · Shimon Whiteson · Ingmar Posner -
2018 Oral: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2017 Poster: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson -
2017 Talk: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson