Timezone: »
On the way to the robust learner for real-world applications, there are still great challenges, including considering unknown environments with limited data. Learnware (Zhou; 2016) describes a novel perspective, and claims that learning models should have reusable and evolvable properties. We propose to Encode Meta InformaTion of features (EMIT), as the model specification for characterizing the changes, which grants the model evolvability to bridge heterogeneous feature spaces. Then, pre-trained models from related tasks can be Reused by our REctiFy via heterOgeneous pRedictor Mapping (REFORM}) framework. In summary, the pre-trained model is adapted to a new environment with different features, through model refining on only a small amount of training data in the current task. Experimental results over both synthetic and real-world tasks with diverse feature configurations validate the effectiveness and practical utility of the proposed framework.
Author Information
Han-Jia Ye (Nanjing University)
De-Chuan Zhan (Nanjing University)
Yuan Jiang (Nanjing University)
Zhi-Hua Zhou (Nanjing University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Rectify Heterogeneous Models with Semantic Mapping »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #84
More from the Same Authors
-
2023 Poster: Fast Rates in Time-Varying Strongly Monotone Games »
Yu-Hu Yan · Peng Zhao · Zhi-Hua Zhou -
2023 Poster: Estimating Possible Causal Effects with Latent Variables via Adjustment »
Tian-Zuo Wang · Tian Qin · Zhi-Hua Zhou -
2023 Poster: SeMAIL: Eliminating Distractors in Visual Imitation via Separated Models »
Shenghua Wan · Yucen Wang · Minghao Shao · Ruying Chen · De-Chuan Zhan -
2023 Poster: Identifying Useful Learnwares for Heterogeneous Label Spaces »
Lan-Zhe Guo · Zhi Zhou · Yu-Feng Li · Zhi-Hua Zhou -
2022 Poster: No-Regret Learning in Time-Varying Zero-Sum Games »
Mengxiao Zhang · Peng Zhao · Haipeng Luo · Zhi-Hua Zhou -
2022 Spotlight: No-Regret Learning in Time-Varying Zero-Sum Games »
Mengxiao Zhang · Peng Zhao · Haipeng Luo · Zhi-Hua Zhou -
2022 Poster: Dynamic Regret of Online Markov Decision Processes »
Peng Zhao · Long-Fei Li · Zhi-Hua Zhou -
2022 Spotlight: Dynamic Regret of Online Markov Decision Processes »
Peng Zhao · Long-Fei Li · Zhi-Hua Zhou -
2021 Poster: Budgeted Heterogeneous Treatment Effect Estimation »
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou -
2021 Spotlight: Budgeted Heterogeneous Treatment Effect Estimation »
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou -
2020 Poster: Cost-effectively Identifying Causal Effects When Only Response Variable is Observable »
Tian-Zuo Wang · Xi-Zhu Wu · Sheng-Jun Huang · Zhi-Hua Zhou -
2020 Poster: Learning with Feature and Distribution Evolvable Streams »
Zhen-Yu Zhang · Peng Zhao · Yuan Jiang · Zhi-Hua Zhou -
2020 Poster: Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data »
Lan-Zhe Guo · Zhen-Yu Zhang · Yuan Jiang · Yu-Feng Li · Zhi-Hua Zhou -
2019 Poster: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Oral: Adaptive Regret of Convex and Smooth Functions »
Lijun Zhang · Tie-Yan Liu · Zhi-Hua Zhou -
2019 Poster: Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin »
Xi-Zhu Wu · Song Liu · Zhi-Hua Zhou -
2019 Oral: Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin »
Xi-Zhu Wu · Song Liu · Zhi-Hua Zhou -
2018 Poster: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou -
2018 Oral: Dynamic Regret of Strongly Adaptive Methods »
Lijun Zhang · Tianbao Yang · rong jin · Zhi-Hua Zhou -
2017 Poster: A Unified View of Multi-Label Performance Measures »
Xi-Zhu Wu · Zhi-Hua Zhou -
2017 Talk: A Unified View of Multi-Label Performance Measures »
Xi-Zhu Wu · Zhi-Hua Zhou