Timezone: »
Domain adaptation is critical for success in new, unseen environments.Adversarial adaptation models have shown tremendous progress towards adapting to new environments by focusing either on discovering domain invariant representations or by mapping between unpaired image domains. While feature space methods are difficult to interpret and sometimes fail to capture pixel-level and low-level domain shifts, image space methods sometimes fail to incorporate high level semantic knowledge relevant for the end task.We propose a model which adapts between domains using both generative image space alignment and latent representation space alignment. Our approach, Cycle-Consistent Adversarial Domain Adaptation (CyCADA), guides transfer between domains according to a specific discriminatively trained task and avoids divergence by enforcing consistency of the relevant semantics before and after adaptation.We evaluate our method on a variety of visual recognition and prediction settings, including digit classification and semantic segmentation of road scenes, advancing state-of-the-art performance for unsupervised adaptation from synthetic to real world driving domains.
Author Information
Judy Hoffman (UC Berkeley and Georgia Tech)
Eric Tzeng (UC Berkeley)
Taesung Park (UC Berkeley)
Jun-Yan Zhu (MIT)
Jun-Yan Zhu received his B.E in Computer Sciences from Tsinghua University in 2012. He obtained his Ph.D. in Electrical Engineering and Computer Sciences from UC Berkeley in 2017 supervised by Alexei A. Efros, after spending five years at CMU and UC Berkeley. His Ph.D. work was supported by a Facebook Fellowship and awarded the 2017 David J. Sakrison Memorial Prize for the outstanding doctoral research from Berkeley EECS. Jun-Yan is currently a postdoctoral researcher at MIT CSAIL.
Philip Isola (UC Berkeley)
Kate Saenko (Boston University)
Alexei Efros (UC Berkeley)
Trevor Darrell (University of California at Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #83
More from the Same Authors
-
2021 : Explaining Reinforcement Learning Policies through Counterfactual Trajectories »
Julius Frost · Olivia Watkins · Eric Weiner · Pieter Abbeel · Trevor Darrell · Bryan Plummer · Kate Saenko -
2023 : ERM++: An Improved Baseline for Domain Generalization »
Piotr Teterwak · Kuniaki Saito · Theodoros Tsiligkaridis · Kate Saenko · Bryan Plummer -
2023 : Internet Explorer: Targeted Representation Learning on the Open Web »
Alexander Li · Ellis Brown · Alexei Efros · Deepak Pathak -
2023 : LLM-grounded Text-to-Image Diffusion Models »
Long (Tony) Lian · Boyi Li · Adam Yala · Trevor Darrell -
2023 Poster: Internet Explorer: Targeted Representation Learning on the Open Web »
Alexander Li · Ellis Brown · Alexei Efros · Deepak Pathak -
2022 : Panel discussion »
Steffen Schneider · Aleksander Madry · Alexei Efros · Chelsea Finn · Soheil Feizi -
2022 : Back to the Source: Test-Time Diffusion-Driven Adaptation »
Jin Gao · Jialing Zhang · Xihui Liu · Trevor Darrell · Evan Shelhamer · Dequan Wang -
2022 : Invited Talk 4: Alexei Efros »
Alexei Efros -
2022 Poster: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Spotlight: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Poster: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2022 Spotlight: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2021 Workshop: ICML Workshop on Human in the Loop Learning (HILL) »
Trevor Darrell · Xin Wang · Li Erran Li · Fisher Yu · Zeynep Akata · Wenwu Zhu · Pradeep Ravikumar · Shiji Zhou · Shanghang Zhang · Kalesha Bullard -
2021 Poster: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2020 Workshop: 2nd ICML Workshop on Human in the Loop Learning (HILL) »
Shanghang Zhang · Xin Wang · Fisher Yu · Jiajun Wu · Trevor Darrell -
2020 : Live Invited Talk: Alexi Efros "Imagining a Post-Dataset Era" »
Alexei Efros -
2020 Poster: Video Prediction via Example Guidance »
Jingwei Xu · Harry (Huazhe) Xu · Bingbing Ni · Xiaokang Yang · Trevor Darrell -
2020 Poster: Test-Time Training with Self-Supervision for Generalization under Distribution Shifts »
Yu Sun · Xiaolong Wang · Zhuang Liu · John Miller · Alexei Efros · Moritz Hardt -
2020 Poster: Frustratingly Simple Few-Shot Object Detection »
Xin Wang · Thomas Huang · Joseph E Gonzalez · Trevor Darrell · Fisher Yu -
2019 : Fisher Yu: "Motion and Prediction for Autonomous Driving" »
Fisher Yu · Trevor Darrell -
2019 : Learning to Reason: Modular and Relational Representations for Visual Questions and Referring Expressions »
Kate Saenko -
2019 : Invited Talk by Professor Alexei Efros (UC Berkeley) »
Alexei Efros -
2019 Poster: Domain Agnostic Learning with Disentangled Representations »
Xingchao Peng · Zijun Huang · Ximeng Sun · Kate Saenko -
2019 Oral: Domain Agnostic Learning with Disentangled Representations »
Xingchao Peng · Zijun Huang · Ximeng Sun · Kate Saenko -
2018 Poster: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2018 Oral: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2017 Poster: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Talk: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell