Learning to Branch
Nina Balcan · Travis Dick · Tuomas Sandholm · Ellen Vitercik

Fri Jul 13th 11:30 -- 11:40 AM @ K11

Tree search algorithms, such as branch-and-bound, are the most widely used tools for solving combinatorial problems. These algorithms recursively partition the search space to find an optimal solution. To keep the tree small, it is crucial to carefully decide, when expanding a tree node, which variable to branch on at that node to partition the remaining space. Many partitioning techniques have been proposed, but no theory describes which is optimal. We show how to use machine learning to determine an optimal weighting of any set of partitioning procedures for the instance distribution at hand using samples. Via theory and experiments, we show that learning to branch is both practical and hugely beneficial.

Author Information

Nina Balcan (Carnegie Mellon University)

Maria-Florina Balcan is an Associate Professor in the School of Computer Science at Carnegie Mellon University. Her main research interests are machine learning and theoretical computer science. Her honors include the CMU SCS Distinguished Dissertation Award, an NSF CAREER Award, a Microsoft Faculty Research Fellowship, a Sloan Research Fellowship, and several paper awards. She has served as a Program Committee Co-chair for COLT 2014, a Program Committee Co-chair for ICML 2016, and a board member of the International Machine Learning Society.

Travis Dick (CMU)
Tuomas Sandholm (Carnegie Mellon University)

Tuomas Sandholm is Angel Jordan Professor of Computer Science at Carnegie Mellon University. He is Founder and Director of the Electronic Marketplaces Laboratory. He has published over 450 papers. With his student Vince Conitzer, he initiated the study of automated mechanism design in 2001. In parallel with his academic career, he was Founder, Chairman, and CTO/Chief Scientist of CombineNet, Inc. from 1997 until its acquisition in 2010. During this period the company commercialized over 800 of the world's largest-scale generalized combinatorial multi-attribute auctions, with over $60 billion in total spend and over $6 billion in generated savings. He is Founder and CEO of Optimized Markets, Strategic Machine, and Strategy Robot. Also, his algorithms run the UNOS kidney exchange, which includes 69% of the transplant centers in the US. He has developed the leading algorithms for several general classes of game. The team that he leads is the two-time world champion in computer Heads-Up No-Limit Texas Hold’em poker, and Libratus became the first and only AI to beat top humans at that game. Among his many honors are the NSF Career Award, inaugural ACM Autonomous Agents Research Award, Sloan Fellowship, Carnegie Science Center Award for Excellence, Edelman Laureateship, Newell Award for Research Excellence, and Computers and Thought Award. He is Fellow of the ACM, AAAI, and INFORMS. He holds an honorary doctorate from the University of Zurich.

Ellen Vitercik (Carnegie Mellon University)

Ellen Vitercik is a PhD student in computer science at Carnegie Mellon University. Her primary research interests are artificial intelligence, machine learning, theoretical computer science, and computational economics. Her honors include a National Science Foundation Graduate Research Fellowship and a Microsoft Research Women's Fellowship.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors