Timezone: »
Gaussian process modulated Poisson processes provide a flexible framework for modeling spatiotemporal point patterns. So far this had been restricted to one dimension, binning to a pre-determined grid, or small data sets of up to a few thousand data points. Here we introduce Cox process inference based on Fourier features. This sparse representation induces global rather than local constraints on the function space and is computationally efficient. This allows us to formulate a grid-free approximation that scales well with the number of data points and the size of the domain. We demonstrate that this allows MCMC approximations to the non-Gaussian posterior. In practice, we find that Fourier features have more consistent optimization behavior than previous approaches. Our approximate Bayesian method can fit over 100 000 events with complex spatiotemporal patterns in three dimensions on a single GPU.
Author Information
ST John (PROWLER.io)
James Hensman (PROWLER.io)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Large-Scale Cox Process Inference using Variational Fourier Features »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #2
More from the Same Authors
-
2023 : Beyond Intuition, a Framework for Applying GPs to Real-World Data »
Kenza Tazi · Jihao Andreas Lin · ST John · Hong Ge · Richard E Turner · Ross Viljoen · Alex Gardner -
2023 Oral: Memory-Based Dual Gaussian Processes for Sequential Learning »
Paul Chang · Prakhar Verma · ST John · Arno Solin · Khan Emtiyaz -
2023 Poster: Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models »
Rui Li · ST John · Arno Solin -
2023 Poster: Causal Modeling of Policy Interventions From Treatment–Outcome Sequences »
Çağlar Hızlı · ST John · Anne Juuti · Tuure Saarinen · Kirsi Pietiläinen · Pekka Marttinen -
2023 Poster: Memory-Based Dual Gaussian Processes for Sequential Learning »
Paul Chang · Prakhar Verma · ST John · Arno Solin · Khan Emtiyaz -
2020 : Open discussion in breakout rooms »
Shakir Mohamed · Faris Gezahegn · ST John -
2020 Social: Queer in AI Social (I) »
Alex Markham · ST John -
2020 : Outro / move to discussion groups »
ST John -
2020 : Intro »
ST John -
2020 Affinity Workshop: Queer in AI »
ST John · William Agnew · Anja Meunier · Alex Markham · Manu Saraswat · Andrew McNamara · Raphael Gontijo Lopes -
2019 Poster: Deep Gaussian Processes with Importance-Weighted Variational Inference »
Hugh Salimbeni · Vincent Dutordoir · James Hensman · Marc P Deisenroth -
2019 Poster: Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models »
Alessandro Davide Ialongo · Mark van der Wilk · James Hensman · Carl E Rasmussen -
2019 Oral: Deep Gaussian Processes with Importance-Weighted Variational Inference »
Hugh Salimbeni · Vincent Dutordoir · James Hensman · Marc P Deisenroth -
2019 Oral: Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models »
Alessandro Davide Ialongo · Mark van der Wilk · James Hensman · Carl E Rasmussen