Timezone: »
Oral
Estimation of Markov Chain via Rank-constrained Likelihood
XUDONG LI · Mengdi Wang · Anru Zhang
This paper studies the estimation of low-rank Markov chains from empirical trajectories. We propose a non-convex estimator based on rank-constrained likelihood maximization. Statistical upper bounds are provided for the Kullback-Leiber divergence and the $\ell_2$ risk between the estimator and the true transition matrix. The estimator reveals a compressed state space of the Markov chain. We also develop a novel DC (difference of convex function) programming algorithm to tackle the rank-constrained non-smooth optimization problem. Convergence results are established. Experiments show that the proposed estimator achieves better empirical performance than other popular approaches.
Author Information
XUDONG LI (Princeton Univerisity)
Mengdi Wang (Princeton University)
Anru Zhang (University of Wisconsin-Madison)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Estimation of Markov Chain via Rank-constrained Likelihood »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #50
More from the Same Authors
-
2022 : Policy Gradient: Theory for Making Best Use of It »
Mengdi Wang -
2022 Poster: Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning approach »
Xuezhou Zhang · Yuda Song · Masatoshi Uehara · Mengdi Wang · Alekh Agarwal · Wen Sun -
2022 Poster: Optimal Estimation of Policy Gradient via Double Fitted Iteration »
Chengzhuo Ni · Ruiqi Zhang · Xiang Ji · Xuezhou Zhang · Mengdi Wang -
2022 Poster: Off-Policy Fitted Q-Evaluation with Differentiable Function Approximators: Z-Estimation and Inference Theory »
Ruiqi Zhang · Xuezhou Zhang · Chengzhuo Ni · Mengdi Wang -
2022 Spotlight: Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning approach »
Xuezhou Zhang · Yuda Song · Masatoshi Uehara · Mengdi Wang · Alekh Agarwal · Wen Sun -
2022 Spotlight: Off-Policy Fitted Q-Evaluation with Differentiable Function Approximators: Z-Estimation and Inference Theory »
Ruiqi Zhang · Xuezhou Zhang · Chengzhuo Ni · Mengdi Wang -
2022 Spotlight: Optimal Estimation of Policy Gradient via Double Fitted Iteration »
Chengzhuo Ni · Ruiqi Zhang · Xiang Ji · Xuezhou Zhang · Mengdi Wang -
2021 Poster: Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient »
Botao Hao · Yaqi Duan · Tor Lattimore · Csaba Szepesvari · Mengdi Wang -
2021 Spotlight: Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient »
Botao Hao · Yaqi Duan · Tor Lattimore · Csaba Szepesvari · Mengdi Wang -
2021 Poster: Bootstrapping Fitted Q-Evaluation for Off-Policy Inference »
Botao Hao · Xiang Ji · Yaqi Duan · Hao Lu · Csaba Szepesvari · Mengdi Wang -
2021 Spotlight: Bootstrapping Fitted Q-Evaluation for Off-Policy Inference »
Botao Hao · Xiang Ji · Yaqi Duan · Hao Lu · Csaba Szepesvari · Mengdi Wang -
2020 : QA for invited talk 7 Wang »
Mengdi Wang -
2020 : Invited talk 7 Wang »
Mengdi Wang -
2020 Workshop: Theoretical Foundations of Reinforcement Learning »
Emma Brunskill · Thodoris Lykouris · Max Simchowitz · Wen Sun · Mengdi Wang -
2020 Poster: Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound »
Lin Yang · Mengdi Wang -
2020 Poster: Model-Based Reinforcement Learning with Value-Targeted Regression »
Alex Ayoub · Zeyu Jia · Csaba Szepesvari · Mengdi Wang · Lin Yang -
2020 Poster: Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation »
Yaqi Duan · Zeyu Jia · Mengdi Wang -
2019 Poster: Sample-Optimal Parametric Q-Learning Using Linearly Additive Features »
Lin Yang · Mengdi Wang -
2019 Oral: Sample-Optimal Parametric Q-Learning Using Linearly Additive Features »
Lin Yang · Mengdi Wang -
2018 Poster: Scalable Bilinear Pi Learning Using State and Action Features »
Yichen Chen · Lihong Li · Mengdi Wang -
2018 Oral: Scalable Bilinear Pi Learning Using State and Action Features »
Yichen Chen · Lihong Li · Mengdi Wang -
2017 Poster: Strong NP-Hardness for Sparse Optimization with Concave Penalty Functions »
Yichen Chen · Dongdong Ge · Mengdi Wang · Zizhuo Wang · Yinyu Ye · Hao Yin -
2017 Talk: Strong NP-Hardness for Sparse Optimization with Concave Penalty Functions »
Yichen Chen · Dongdong Ge · Mengdi Wang · Zizhuo Wang · Yinyu Ye · Hao Yin