Timezone: »
Deep latent variable models, trained using variational autoencoders or generative adversarial networks, are now a key technique for representation learning of continuous structures. However, applying similar methods to discrete structures, such as text sequences or discretized images, has proven to be more challenging. In this work, we propose a more flexible method for training deep latent variable models of discrete structures. Our approach is based on the recently proposed Wasserstein Autoencoder (WAE) which formalizes adversarial autoencoders as an optimal transport problem. We first extend this framework to model discrete sequences, and then further explore different learned priors targeting a controllable representation. Unlike many other latent variable generative models for text, this adversarially regularized autoencoder (ARAE) allows us to generate fluent textual outputs as well as perform manipulations in the latent space to induce change in the output space. Finally we show that the latent representation can be trained to perform unaligned textual style transfer, giving improvements both in automatic measures and human evaluation.
Author Information
Jake Zhao (NYU / Facebook AI Research)
Yoon Kim (Harvard University)
Kelly Zhang (New York University)
Alexander Rush (Harvard University)
Yann LeCun (New York University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Adversarially Regularized Autoencoders »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #58
More from the Same Authors
-
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 : What Do We Maximize In Self-Supervised Learning? »
Ravid Shwartz-Ziv · Ravid Shwartz-Ziv · Randall Balestriero · Yann LeCun · Yann LeCun -
2023 Poster: RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank »
Quentin Garrido · Randall Balestriero · Laurent Najman · Yann LeCun -
2023 Poster: The SSL Interplay: Augmentations, Inductive Bias, and Generalization »
Vivien Cabannnes · Bobak T Kiani · Randall Balestriero · Yann LeCun · Alberto Bietti -
2023 Oral: RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank »
Quentin Garrido · Randall Balestriero · Laurent Najman · Yann LeCun -
2023 Poster: Self-supervised learning of Split Invariant Equivariant representations »
Quentin Garrido · Laurent Najman · Yann LeCun -
2023 Poster: A Generalization of ViT/MLP-Mixer to Graphs »
Xiaoxin He · Bryan Hooi · Thomas Laurent · Adam Perold · Yann LeCun · Xavier Bresson -
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2020 Poster: Emergence of Separable Manifolds in Deep Language Representations »
Jonathan Mamou · Hang Le · Miguel A del Rio Fernandez · Cory Stephenson · Hanlin Tang · Yoon Kim · SueYeon Chung -
2020 Poster: Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models »
Rares-Darius Buhai · Yoni Halpern · Yoon Kim · Andrej Risteski · David Sontag -
2019 Poster: Latent Normalizing Flows for Discrete Sequences »
Zachary Ziegler · Alexander Rush -
2019 Oral: Latent Normalizing Flows for Discrete Sequences »
Zachary Ziegler · Alexander Rush -
2019 Poster: Tensor Variable Elimination for Plated Factor Graphs »
Fritz Obermeyer · Elias Bingham · Martin Jankowiak · Neeraj Pradhan · Justin Chiu · Alexander Rush · Noah Goodman -
2019 Oral: Tensor Variable Elimination for Plated Factor Graphs »
Fritz Obermeyer · Elias Bingham · Martin Jankowiak · Neeraj Pradhan · Justin Chiu · Alexander Rush · Noah Goodman -
2018 Poster: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2018 Poster: Weightless: Lossy weight encoding for deep neural network compression »
Brandon Reagen · Udit Gupta · Bob Adolf · Michael Mitzenmacher · Alexander Rush · Gu-Yeon Wei · David Brooks -
2018 Oral: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2018 Oral: Weightless: Lossy weight encoding for deep neural network compression »
Brandon Reagen · Udit Gupta · Bob Adolf · Michael Mitzenmacher · Alexander Rush · Gu-Yeon Wei · David Brooks -
2018 Poster: Comparing Dynamics: Deep Neural Networks versus Glassy Systems »
Marco Baity-Jesi · Levent Sagun · Mario Geiger · Stefano Spigler · Gerard Arous · Chiara Cammarota · Yann LeCun · Matthieu Wyart · Giulio Biroli -
2018 Oral: Comparing Dynamics: Deep Neural Networks versus Glassy Systems »
Marco Baity-Jesi · Levent Sagun · Mario Geiger · Stefano Spigler · Gerard Arous · Chiara Cammarota · Yann LeCun · Matthieu Wyart · Giulio Biroli -
2017 Poster: Image-to-Markup Generation with Coarse-to-Fine Attention »
Yuntian Deng · Anssi Kanervisto · Jeffrey Ling · Alexander Rush -
2017 Talk: Image-to-Markup Generation with Coarse-to-Fine Attention »
Yuntian Deng · Anssi Kanervisto · Jeffrey Ling · Alexander Rush -
2017 Poster: Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs »
Li Jing · Yichen Shen · Tena Dubcek · John E Peurifoy · Scott Skirlo · Yann LeCun · Max Tegmark · Marin Soljačić -
2017 Talk: Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs »
Li Jing · Yichen Shen · Tena Dubcek · John E Peurifoy · Scott Skirlo · Yann LeCun · Max Tegmark · Marin Soljačić