Timezone: »
Many popular dimensionality reduction procedures have out-of-sample extensions, which allow a practitioner to apply a learned embedding to observations not seen in the initial training sample. In this work, we consider the problem of obtaining an out-of-sample extension for the adjacency spectral embedding, a procedure for embedding the vertices of a graph into Euclidean space. We present two different approaches to this problem, one based on a least-squares objective and the other based on a maximum-likelihood formulation. We show that if the graph of interest is drawn according to a certain latent position model called a random dot product graph, then both of these out-of-sample extensions estimate the true latent position of the out-of-sample vertex with the same error rate. Further, we prove a central limit theorem for the least-squares-based extension, showing that the estimate is asymptotically normal about the truth in the large-graph limit.
Author Information
Keith Levin (University of Michigan)
Fred Roosta (University of Queensland)
Michael Mahoney (UC Berkeley)
Carey Priebe (Johns Hopkins University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Out-of-sample extension of graph adjacency spectral embedding »
Fri. Jul 13th 04:15 -- 07:00 PM Room Hall B #76
More from the Same Authors
-
2023 Poster: Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching »
Ilgee Hong · Sen Na · Michael Mahoney · Mladen Kolar -
2023 Poster: The Value of Out-of-Distribution Data »
Ashwin De Silva · Rahul Ramesh · Carey Priebe · Pratik Chaudhari · Joshua Vogelstein -
2023 Poster: Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes »
Liam Hodgkinson · Chris van der Heide · Fred Roosta · Michael Mahoney -
2023 Poster: A Three-regime Model of Network Pruning »
Yefan Zhou · Yaoqing Yang · Arin Chang · Michael Mahoney -
2023 Poster: Learning Physical Models that Can Respect Conservation Laws »
Derek Hansen · Danielle Robinson · Shima Alizadeh · Gaurav Gupta · Michael Mahoney -
2022 Poster: AutoIP: A United Framework to Integrate Physics into Gaussian Processes »
Da Long · Zheng Wang · Aditi Krishnapriyan · Robert Kirby · Shandian Zhe · Michael Mahoney -
2022 Poster: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Spotlight: AutoIP: A United Framework to Integrate Physics into Gaussian Processes »
Da Long · Zheng Wang · Aditi Krishnapriyan · Robert Kirby · Shandian Zhe · Michael Mahoney -
2022 Spotlight: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Poster: Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers »
Liam Hodgkinson · Umut Simsekli · Rajiv Khanna · Michael Mahoney -
2022 Poster: Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows »
Feynman Liang · Michael Mahoney · Liam Hodgkinson -
2022 Poster: Neurotoxin: Durable Backdoors in Federated Learning »
Zhengming Zhang · Ashwinee Panda · Linyue Song · Yaoqing Yang · Michael Mahoney · Prateek Mittal · Kannan Ramchandran · Joseph E Gonzalez -
2022 Spotlight: Neurotoxin: Durable Backdoors in Federated Learning »
Zhengming Zhang · Ashwinee Panda · Linyue Song · Yaoqing Yang · Michael Mahoney · Prateek Mittal · Kannan Ramchandran · Joseph E Gonzalez -
2022 Spotlight: Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers »
Liam Hodgkinson · Umut Simsekli · Rajiv Khanna · Michael Mahoney -
2022 Spotlight: Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows »
Feynman Liang · Michael Mahoney · Liam Hodgkinson -
2021 Workshop: Beyond first-order methods in machine learning systems »
Albert S Berahas · Anastasios Kyrillidis · Fred Roosta · Amir Gholaminejad · Michael Mahoney · Rachael Tappenden · Raghu Bollapragada · Rixon Crane · J. Lyle Kim -
2021 Poster: HAWQ-V3: Dyadic Neural Network Quantization »
Zhewei Yao · Zhen Dong · Zhangcheng Zheng · Amir Gholaminejad · Jiali Yu · Eric Tan · Leyuan Wang · Qijing Huang · Yida Wang · Michael Mahoney · EECS Kurt Keutzer -
2021 Spotlight: HAWQ-V3: Dyadic Neural Network Quantization »
Zhewei Yao · Zhen Dong · Zhangcheng Zheng · Amir Gholaminejad · Jiali Yu · Eric Tan · Leyuan Wang · Qijing Huang · Yida Wang · Michael Mahoney · EECS Kurt Keutzer -
2021 Poster: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Oral: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Poster: Multiplicative Noise and Heavy Tails in Stochastic Optimization »
Liam Hodgkinson · Michael Mahoney -
2021 Spotlight: Multiplicative Noise and Heavy Tails in Stochastic Optimization »
Liam Hodgkinson · Michael Mahoney -
2020 : Determinantal Point Processes in Randomized Numerical Linear Algebra »
Michael Mahoney -
2020 Workshop: Beyond first order methods in machine learning systems »
Albert S Berahas · Amir Gholaminejad · Anastasios Kyrillidis · Michael Mahoney · Fred Roosta -
2020 Poster: Forecasting Sequential Data Using Consistent Koopman Autoencoders »
Omri Azencot · N. Benjamin Erichson · Vanessa Lin · Michael Mahoney -
2020 Poster: PowerNorm: Rethinking Batch Normalization in Transformers »
Sheng Shen · Zhewei Yao · Amir Gholaminejad · Michael Mahoney · Kurt Keutzer -
2020 Poster: Error Estimation for Sketched SVD via the Bootstrap »
Miles Lopes · N. Benjamin Erichson · Michael Mahoney -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Why Deep Learning Works: Traditional and Heavy-Tailed Implicit Self-Regularization in Deep Neural Networks »
Michael Mahoney -
2019 Poster: Traditional and Heavy Tailed Self Regularization in Neural Network Models »
Michael Mahoney · Charles H Martin -
2019 Oral: Traditional and Heavy Tailed Self Regularization in Neural Network Models »
Michael Mahoney · Charles H Martin -
2018 Poster: Invariance of Weight Distributions in Rectified MLPs »
Susumu Tsuchida · Fred Roosta · Marcus Gallagher -
2018 Poster: Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap »
Miles Lopes · Shusen Wang · Michael Mahoney -
2018 Oral: Invariance of Weight Distributions in Rectified MLPs »
Susumu Tsuchida · Fred Roosta · Marcus Gallagher -
2018 Oral: Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap »
Miles Lopes · Shusen Wang · Michael Mahoney -
2017 Poster: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging »
Shusen Wang · Alex Gittens · Michael Mahoney -
2017 Poster: Capacity Releasing Diffusion for Speed and Locality. »
Di Wang · Kimon Fountoulakis · Monika Henzinger · Michael Mahoney · Satish Rao -
2017 Talk: Capacity Releasing Diffusion for Speed and Locality. »
Di Wang · Kimon Fountoulakis · Monika Henzinger · Michael Mahoney · Satish Rao -
2017 Talk: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging »
Shusen Wang · Alex Gittens · Michael Mahoney