Timezone: »

Synthesizing Programs for Images using Reinforced Adversarial Learning
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals

Thu Jul 12 08:00 AM -- 08:20 AM (PDT) @ A7

Advances in deep generative networks have led to impressive results in recent years. Nevertheless, such models can often waste their capacity on the minutiae of datasets, presumably due to weak inductive biases in their decoders. This is where graphics engines may come in handy since they abstract away low-level details and represent images as high-level programs. Current methods that combine deep learning and renderers are limited by hand-crafted likelihood or distance functions, a need for large amounts of supervision, or difficulties in scaling their inference algorithms to richer datasets. To mitigate these issues, we present SPIRAL, an adversarially trained agent that generates a program which is executed by a graphics engine to interpret and sample images. The goal of this agent is to fool a discriminator network that distinguishes between real and rendered data, trained with a distributed reinforcement learning setup without any supervision. A surprising finding is that using the discriminator's output as a reward signal is the key to allow the agent to make meaningful progress at matching the desired output rendering. To the best of our knowledge, this is the first demonstration of an end-to-end, unsupervised and adversarial inverse graphics agent on challenging real world (MNIST, Omniglot, CelebA) and synthetic 3D datasets. A video of the agent can be found at https://youtu.be/iSyvwAwa7vk.

Author Information

Iaroslav Ganin (Montreal Institute for Learning Algorithms)
Tejas Kulkarni (DeepMind)
Igor Babuschkin (DeepMind)
S. M. Ali Eslami (DeepMind)
S. M. Ali Eslami

S. M. Ali Eslami is a staff research scientist at DeepMind working on problems related to artificial intelligence. Prior to that, he was a post-doctoral researcher at Microsoft Research in Cambridge. He did his PhD in the School of Informatics at the University of Edinburgh, during which he was also a visiting researcher in the Visual Geometry Group at the University of Oxford. His research is focused on figuring out how we can get computers to learn with less human supervision.

Oriol Vinyals (DeepMind)

Oriol Vinyals is a Research Scientist at Google. He works in deep learning with the Google Brain team. Oriol holds a Ph.D. in EECS from University of California, Berkeley, and a Masters degree from University of California, San Diego. He is a recipient of the 2011 Microsoft Research PhD Fellowship. He was an early adopter of the new deep learning wave at Berkeley, and in his thesis he focused on non-convex optimization and recurrent neural networks. At Google Brain he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, language, and vision.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors