Timezone: »
Author Information
Aryan Mokhtari (MIT)
Hamed Hassani (University of Pennsylvania)

I am an assistant professor in the Department of Electrical and Systems Engineering (as of July 2017). I hold a secondary appointment in the Department of Computer and Information Systems. I am also a faculty affiliate of the Warren Center for Network and Data Sciences. Before joining Penn, I was a research fellow at the Simons Institute, UC Berkeley (program: Foundations of Machine Learning). Prior to that, I was a post-doctoral scholar and lecturer in the Institute for Machine Learning at ETH Zürich. I received my Ph.D. degree in Computer and Communication Sciences from EPFL.
Amin Karbasi (Yale)

Amin Karbasi is currently an assistant professor of Electrical Engineering, Computer Science, and Statistics at Yale University. He has been the recipient of the National Science Foundation (NSF) Career Award 2019, Office of Naval Research (ONR) Young Investigator Award 2019, Air Force Office of Scientific Research (AFOSR) Young Investigator Award 2018, DARPA Young Faculty Award 2016, National Academy of Engineering Grainger Award 2017, Amazon Research Award 2018, Google Faculty Research Award 2016, Microsoft Azure Research Award 2016, Simons Research Fellowship 2017, and ETH Research Fellowship 2013. His work has also been recognized with a number of paper awards, including Medical Image Computing and Computer Assisted Interventions Conference (MICCAI) 2017, International Conference on Artificial Intelligence and Statistics (AISTAT) 2015, IEEE ComSoc Data Storage 2013, International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2011, ACM SIGMETRICS 2010, and IEEE International Symposium on Information Theory (ISIT) 2010 (runner-up). His Ph.D. thesis received the Patrick Denantes Memorial Prize 2013 from the School of Computer and Communication Sciences at EPFL, Switzerland.
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Decentralized Submodular Maximization: Bridging Discrete and Continuous Settings »
Thu. Jul 12th 04:15 -- 07:00 PM Room Hall B #146
More from the Same Authors
-
2021 : Minimax Optimization: The Case of Convex-Submodular »
Arman Adibi · Aryan Mokhtari · Hamed Hassani -
2021 : Out-of-Distribution Robustness in Deep Learning Compression »
Eric Lei · Hamed Hassani -
2022 : Toward Certified Robustness Against Real-World Distribution Shifts »
Haoze Wu · TERUHIRO TAGOMORI · Alex Robey · Fengjun Yang · Nikolai Matni · George J. Pappas · Hamed Hassani · Corina Pasareanu · Clark Barrett -
2023 Poster: Demystifying Disagreement-on-the-Line in High Dimensions »
Donghwan Lee · Behrad Moniri · Xinmeng Huang · Edgar Dobriban · Hamed Hassani -
2023 Poster: Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods »
Aleksandr Shevchenko · Kevin Kögler · Hamed Hassani · Marco Mondelli -
2023 Oral: Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods »
Aleksandr Shevchenko · Kevin Kögler · Hamed Hassani · Marco Mondelli -
2022 Poster: Probabilistically Robust Learning: Balancing Average- and Worst-case Performance »
Alex Robey · Luiz F. O. Chamon · George J. Pappas · Hamed Hassani -
2022 Spotlight: Probabilistically Robust Learning: Balancing Average- and Worst-case Performance »
Alex Robey · Luiz F. O. Chamon · George J. Pappas · Hamed Hassani -
2022 Poster: Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes »
Insu Han · Mike Gartrell · Elvis Dohmatob · Amin Karbasi -
2022 Oral: Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes »
Insu Han · Mike Gartrell · Elvis Dohmatob · Amin Karbasi -
2021 : Minimax Optimization: The Case of Convex-Submodular »
Hamed Hassani · Aryan Mokhtari · Arman Adibi -
2021 : Contributed Talk #1 »
Eric Lei · Hamed Hassani · Shirin Bidokhti -
2021 Workshop: Over-parameterization: Pitfalls and Opportunities »
Yasaman Bahri · Quanquan Gu · Amin Karbasi · Hanie Sedghi -
2021 : Greedy and Its Friends »
Amin Karbasi -
2021 Poster: Exploiting Shared Representations for Personalized Federated Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2021 Spotlight: Exploiting Shared Representations for Personalized Federated Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2021 Poster: Regularized Submodular Maximization at Scale »
Ehsan Kazemi · shervin minaee · Moran Feldman · Amin Karbasi -
2021 Spotlight: Regularized Submodular Maximization at Scale »
Ehsan Kazemi · shervin minaee · Moran Feldman · Amin Karbasi -
2020 : Mode Finding for SLC Distributions via Regularized Submodular Maximization »
Ehsan Kazemi · Amin Karbasi · Moran Feldman -
2020 Poster: More Data Can Expand The Generalization Gap Between Adversarially Robust and Standard Models »
Lin Chen · Yifei Min · Mingrui Zhang · Amin Karbasi -
2020 Poster: Quantized Decentralized Stochastic Learning over Directed Graphs »
Hossein Taheri · Aryan Mokhtari · Hamed Hassani · Ramtin Pedarsani -
2020 Poster: Streaming Submodular Maximization under a k-Set System Constraint »
Ran Haba · Ehsan Kazemi · Moran Feldman · Amin Karbasi -
2020 Tutorial: Submodular Optimization: From Discrete to Continuous and Back »
Hamed Hassani · Amin Karbasi -
2019 Poster: Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications »
Christopher Harshaw · Moran Feldman · Justin Ward · Amin Karbasi -
2019 Oral: Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications »
Christopher Harshaw · Moran Feldman · Justin Ward · Amin Karbasi -
2019 Poster: Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity »
Ehsan Kazemi · Marko Mitrovic · Morteza Zadimoghaddam · Silvio Lattanzi · Amin Karbasi -
2019 Poster: Hessian Aided Policy Gradient »
Zebang Shen · Alejandro Ribeiro · Hamed Hassani · Hui Qian · Chao Mi -
2019 Oral: Hessian Aided Policy Gradient »
Zebang Shen · Alejandro Ribeiro · Hamed Hassani · Hui Qian · Chao Mi -
2019 Oral: Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity »
Ehsan Kazemi · Marko Mitrovic · Morteza Zadimoghaddam · Silvio Lattanzi · Amin Karbasi -
2019 Poster: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi -
2019 Oral: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi -
2018 Poster: Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity »
Lin Chen · Christopher Harshaw · Hamed Hassani · Amin Karbasi -
2018 Oral: Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity »
Lin Chen · Christopher Harshaw · Hamed Hassani · Amin Karbasi -
2018 Poster: Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints »
Ehsan Kazemi · Morteza Zadimoghaddam · Amin Karbasi -
2018 Poster: Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy? »
Lin Chen · Moran Feldman · Amin Karbasi -
2018 Poster: Data Summarization at Scale: A Two-Stage Submodular Approach »
Marko Mitrovic · Ehsan Kazemi · Morteza Zadimoghaddam · Amin Karbasi -
2018 Poster: Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication »
Zebang Shen · Aryan Mokhtari · Tengfei Zhou · Peilin Zhao · Hui Qian -
2018 Oral: Data Summarization at Scale: A Two-Stage Submodular Approach »
Marko Mitrovic · Ehsan Kazemi · Morteza Zadimoghaddam · Amin Karbasi -
2018 Oral: Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints »
Ehsan Kazemi · Morteza Zadimoghaddam · Amin Karbasi -
2018 Oral: Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy? »
Lin Chen · Moran Feldman · Amin Karbasi -
2018 Oral: Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication »
Zebang Shen · Aryan Mokhtari · Tengfei Zhou · Peilin Zhao · Hui Qian -
2017 Poster: Differentially Private Submodular Maximization: Data Summarization in Disguise »
Marko Mitrovic · Mark Bun · Andreas Krause · Amin Karbasi -
2017 Poster: Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten" »
Baharan Mirzasoleiman · Amin Karbasi · Andreas Krause -
2017 Poster: Probabilistic Submodular Maximization in Sub-Linear Time »
Serban A Stan · Morteza Zadimoghaddam · Andreas Krause · Amin Karbasi -
2017 Talk: Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten" »
Baharan Mirzasoleiman · Amin Karbasi · Andreas Krause -
2017 Talk: Probabilistic Submodular Maximization in Sub-Linear Time »
Serban A Stan · Morteza Zadimoghaddam · Andreas Krause · Amin Karbasi -
2017 Talk: Differentially Private Submodular Maximization: Data Summarization in Disguise »
Marko Mitrovic · Mark Bun · Andreas Krause · Amin Karbasi