Timezone: »
Oral
PixelSNAIL: An Improved Autoregressive Generative Model
Xi Chen · Nikhil Mishra · Mostafa Rohaninejad · Pieter Abbeel
Thu Jul 12 06:10 AM -- 06:20 AM (PDT) @ Victoria
Autoregressive generative models achieve the best results in density estimation tasks involving high dimensional data, such as images or audio.They pose density estimation as a sequence modeling task, where a recurrent neural network (RNN) models the conditional distribution over the next element conditioned on all previous elements.In this paradigm, the bottleneck is the extent to which the RNN can model long-range dependencies, and the most successful approaches rely on causal convolutions.Taking inspiration from recent work in meta reinforcement learning, where dealing with long-range dependencies is also essential, we introduce a new generative model architecture that combines causal convolutions with self attention.In this paper, we describe the resulting model and present state-of-the-art log-likelihood results on heavily benchmarked datasets: CIFAR-10, $32 \times 32$ ImageNet and $64 \times 64$ ImageNet.Our implementation will be made available at \url{https://github.com/neocxi/pixelsnail-public}.
Author Information
Xi Chen (covariant.ai)
Nikhil Mishra
Mostafa Rohaninejad
Pieter Abbeel (OpenAI / UC Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: PixelSNAIL: An Improved Autoregressive Generative Model »
Thu Jul 12th 04:15 -- 07:00 PM Room Hall B
More from the Same Authors
-
2020 Poster: CURL: Contrastive Unsupervised Representations for Reinforcement Learning »
Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2020 Poster: Planning to Explore via Self-Supervised World Models »
Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak -
2020 Poster: Responsive Safety in Reinforcement Learning by PID Lagrangian Methods »
Adam Stooke · Joshua Achiam · Pieter Abbeel -
2020 Poster: Variable Skipping for Autoregressive Range Density Estimation »
Eric Liang · Zongheng Yang · Ion Stoica · Pieter Abbeel · Yan Duan · Peter Chen -
2019 Workshop: Workshop on Self-Supervised Learning »
Aaron van den Oord · Yusuf Aytar · Carl Doersch · Carl Vondrick · Alec Radford · Pierre Sermanet · Amir Zamir · Pieter Abbeel -
2019 Poster: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Poster: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Oral: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Oral: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2018 Poster: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Oral: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Poster: Automatic Goal Generation for Reinforcement Learning Agents »
Carlos Florensa · David Held · Xinyang Geng · Pieter Abbeel -
2018 Poster: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2018 Poster: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Poster: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Automatic Goal Generation for Reinforcement Learning Agents »
Carlos Florensa · David Held · Xinyang Geng · Pieter Abbeel -
2018 Oral: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Oral: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2017 Poster: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Poster: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Poster: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Poster: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel -
2017 Talk: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Talk: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Talk: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Talk: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel