Timezone: »
We propose a new statistical model for ranking data, i.e., a new family of probability distributions on permutations. Our model is inspired by the idea of a data-generating process in the form of a noisy sorting procedure, in which deterministic comparisons between pairs of items are replaced by Bernoulli trials. The probability of producing a certain ranking as a result then essentially depends on the Bernoulli parameters, which can be interpreted as pairwise preferences. We show that our model can be written in closed form if insertion or quick sort are used as sorting algorithms, and propose a maximum likelihood approach for parameter estimation. We also introduce a generalization of the model, in which the constraints on pairwise preferences are relaxed, and for which maximum likelihood estimation can be carried out based on a variation of the generalized iterative scaling algorithm. Experimentally, we show that the models perform very well in terms of goodness of fit, compared to existing models for ranking data.
Author Information
Adil El Mesaoudi-Paul (University of Paderborn)
Eyke Hüllermeier (Paderborn University)
Robert Busa-Fekete (Yahoo Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Ranking Distributions based on Noisy Sorting »
Thu. Jul 12th 04:15 -- 07:00 PM Room Hall B #32
More from the Same Authors
-
2023 Poster: On Second-Order Scoring Rules for Epistemic Uncertainty Quantification »
Viktor Bengs · Eyke Hüllermeier · Willem Waegeman -
2022 Poster: Stochastic Contextual Dueling Bandits under Linear Stochastic Transitivity Models »
Viktor Bengs · Aadirupa Saha · Eyke Hüllermeier -
2022 Spotlight: Stochastic Contextual Dueling Bandits under Linear Stochastic Transitivity Models »
Viktor Bengs · Aadirupa Saha · Eyke Hüllermeier -
2021 : Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods (Spotlight #4) »
Eyke Hüllermeier -
2020 Poster: Preselection Bandits »
Viktor Bengs · Eyke Hüllermeier -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2017 Poster: Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening »
Mohsen Ahmadi Fahandar · Eyke Hüllermeier · Ines Couso -
2017 Talk: Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening »
Mohsen Ahmadi Fahandar · Eyke Hüllermeier · Ines Couso