Timezone: »
One of the most widely used optimization methodsfor large-scale machine learning problemsis distributed asynchronous stochastic gradientdescent (DASGD). However, a key issue thatarises here is that of delayed gradients: when a“worker” node asynchronously contributes a gradientupdate to the “master”, the global modelparameter may have changed, rendering this informationstale. In massively parallel computinggrids, these delays can quickly add up if the computationalthroughput of a node is saturated, sothe convergence of DASGD is uncertain underthese conditions. Nevertheless, by using a judiciouslychosen quasilinear step-size sequence, weshow that it is possible to amortize these delaysand achieve global convergence with probability1, even when the delays grow at a polynomialrate. In this way, our results help reaffirm thesuccessful application of DASGD to large-scaleoptimization problems.
Author Information
Zhengyuan Zhou (Stanford University)
Panayotis Mertikopoulos (CNRS)
Nicholas Bambos (Stanford University)
Peter Glynn (Stanford University)
Yinyu Ye
Li-Jia Li (Google)
Li Fei-Fei (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go? »
Thu. Jul 12th 04:15 -- 07:00 PM Room Hall B #13
More from the Same Authors
-
2022 Poster: Nested Bandits »
Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier · Houssam Zenati -
2022 Poster: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Spotlight: Nested Bandits »
Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier · Houssam Zenati -
2022 Poster: A Study of Face Obfuscation in ImageNet »
Kaiyu Yang · Jacqueline Yau · Li Fei-Fei · Jia Deng · Olga Russakovsky -
2022 Spotlight: A Study of Face Obfuscation in ImageNet »
Kaiyu Yang · Jacqueline Yau · Li Fei-Fei · Jia Deng · Olga Russakovsky -
2022 Poster: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2022 Spotlight: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2021 Poster: Online Learning for Load Balancing of Unknown Monotone Resource Allocation Games »
Ilai Bistritz · Nicholas Bambos -
2021 Spotlight: Online Learning for Load Balancing of Unknown Monotone Resource Allocation Games »
Ilai Bistritz · Nicholas Bambos -
2021 Poster: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Spotlight: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Oral: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies »
Jim Fan · Guanzhi Wang · De-An Huang · Zhiding Yu · Li Fei-Fei · Yuke Zhu · Anima Anandkumar -
2021 Spotlight: SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies »
Jim Fan · Guanzhi Wang · De-An Huang · Zhiding Yu · Li Fei-Fei · Yuke Zhu · Anima Anandkumar -
2021 Poster: Zeroth-Order Non-Convex Learning via Hierarchical Dual Averaging »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier -
2021 Spotlight: Zeroth-Order Non-Convex Learning via Hierarchical Dual Averaging »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier -
2020 Poster: Gradient-free Online Learning in Continuous Games with Delayed Rewards »
Amélie Héliou · Panayotis Mertikopoulos · Zhengyuan Zhou -
2020 Poster: My Fair Bandit: Distributed Learning of Max-Min Fairness with Multi-player Bandits »
Ilai Bistritz · Tavor Z Baharav · Amir Leshem · Nicholas Bambos -
2020 Poster: A new regret analysis for Adam-type algorithms »
Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher -
2020 Poster: Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games »
Tianyi Lin · Zhengyuan Zhou · Panayotis Mertikopoulos · Michael Jordan -
2020 Poster: Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits »
Nian Si · Fan Zhang · Zhengyuan Zhou · Jose Blanchet -
2019 Poster: Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints »
Nikolaos Liakopoulos · Apostolos Destounis · Georgios Paschos · Thrasyvoulos Spyropoulos · Panayotis Mertikopoulos -
2019 Oral: Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints »
Nikolaos Liakopoulos · Apostolos Destounis · Georgios Paschos · Thrasyvoulos Spyropoulos · Panayotis Mertikopoulos -
2019 Poster: Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning »
Casey Chu · Jose Blanchet · Peter Glynn -
2019 Oral: Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning »
Casey Chu · Jose Blanchet · Peter Glynn -
2018 Poster: MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels »
Lu Jiang · Zhengyuan Zhou · Thomas Leung · Li-Jia Li · Li Fei-Fei -
2018 Oral: MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels »
Lu Jiang · Zhengyuan Zhou · Thomas Leung · Li-Jia Li · Li Fei-Fei