Timezone: »
We introduce a novel generative formulation of deep probabilistic models implementing "soft" constraints on their function dynamics. In particular, we develop a flexible methodological framework where the modeled functions and derivatives of a given order are subject to inequality or equality constraints. We then characterize the posterior distribution over model and constraint parameters through stochastic variational inference. As a result, the proposed approach allows for accurate and scalable uncertainty quantification on the predictions and on all parameters. We demonstrate the application of equality constraints in the challenging problem of parameter inference in ordinary differential equation models, while we showcase the application of inequality constraints on the problem of monotonic regression of count data. The proposed approach is extensively tested in several experimental settings, leading to highly competitive results in challenging modeling applications, while offering high expressiveness, flexibility and scalability.
Author Information
Marco Lorenzi (Inria Sophia Antipolis)
Maurizio Filippone (Eurecom)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Constraining the Dynamics of Deep Probabilistic Models »
Thu. Jul 12th 04:15 -- 07:00 PM Room Hall B #72
More from the Same Authors
-
2022 : A New Look on Diffusion Times for Score-based Generative Models »
Giulio Franzese · Simone Rossi · Lixuan YANG · alessandro finamore · Dario Rossi · Maurizio Filippone · Pietro Michiardi -
2023 : Improving Training of Likelihood-based Generative Models with Gaussian Homotopy »
Ba-Hien Tran · Giulio Franzese · Pietro Michiardi · Maurizio Filippone -
2023 Poster: Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes »
Ba-Hien Tran · Babak Shahbaba · Stephan Mandt · Maurizio Filippone -
2023 Poster: A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates »
Yann Fraboni · Richard Vidal · Laetitia Kameni · Marco Lorenzi -
2022 Poster: Revisiting the Effects of Stochasticity for Hamiltonian Samplers »
Giulio Franzese · Dimitrios Milios · Maurizio Filippone · Pietro Michiardi -
2022 Spotlight: Revisiting the Effects of Stochasticity for Hamiltonian Samplers »
Giulio Franzese · Dimitrios Milios · Maurizio Filippone · Pietro Michiardi -
2021 Poster: Sparse within Sparse Gaussian Processes using Neighbor Information »
Gia-Lac Tran · Dimitrios Milios · Pietro Michiardi · Maurizio Filippone -
2021 Poster: Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning »
Yann Fraboni · Richard Vidal · Laetitia Kameni · Marco Lorenzi -
2021 Spotlight: Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning »
Yann Fraboni · Richard Vidal · Laetitia Kameni · Marco Lorenzi -
2021 Spotlight: Sparse within Sparse Gaussian Processes using Neighbor Information »
Gia-Lac Tran · Dimitrios Milios · Pietro Michiardi · Maurizio Filippone -
2021 Poster: An Identifiable Double VAE For Disentangled Representations »
Graziano Mita · Maurizio Filippone · Pietro Michiardi -
2021 Spotlight: An Identifiable Double VAE For Disentangled Representations »
Graziano Mita · Maurizio Filippone · Pietro Michiardi -
2019 Poster: Good Initializations of Variational Bayes for Deep Models »
Simone Rossi · Pietro Michiardi · Maurizio Filippone -
2019 Oral: Good Initializations of Variational Bayes for Deep Models »
Simone Rossi · Pietro Michiardi · Maurizio Filippone -
2019 Poster: Sparse Multi-Channel Variational Autoencoder for the Joint Analysis of Heterogeneous Data »
Luigi Antelmi · Nicholas Ayache · Philippe Robert · Marco Lorenzi -
2019 Oral: Sparse Multi-Channel Variational Autoencoder for the Joint Analysis of Heterogeneous Data »
Luigi Antelmi · Nicholas Ayache · Philippe Robert · Marco Lorenzi -
2017 Poster: Random Feature Expansions for Deep Gaussian Processes »
Kurt Cutajar · Edwin Bonilla · Pietro Michiardi · Maurizio Filippone -
2017 Talk: Random Feature Expansions for Deep Gaussian Processes »
Kurt Cutajar · Edwin Bonilla · Pietro Michiardi · Maurizio Filippone