Timezone: »
We propose Efficient Neural Architecture Search (ENAS), a fast and inexpensive approach for automatic model design. ENAS constructs a large computational graph, where each subgraph represents a neural network architecture, hence forcing all architectures to share their parameters. A controller is trained with policy gradient to search for a subgraph that maximizes the expected reward on a validation set. Meanwhile a model corresponding to the selected subgraph is trained to minimize a canonical cross entropy loss. Sharing parameters among child models allows ENAS to deliver strong empirical performances, whilst using much fewer GPU-hours than existing automatic model design approaches, and notably, 1000x less expensive than standard Neural Architecture Search. On Penn Treebank, ENAS discovers a novel architecture that achieves a test perplexity of 56.3, on par with the existing state-of-the-art among all methods without post-training processing. On CIFAR-10, ENAS finds a novel architecture that achieves 2.89% test error, which is on par with the 2.65% test error of NASNet (Zoph et al., 2018).
Author Information
Hieu Pham (Carnegie Mellon University)
Melody Guan (Stanford University)
Barret Zoph (Google)
Quoc Le (Google Brain)
Jeff Dean (Google Brain)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Efficient Neural Architecture Search via Parameters Sharing »
Wed Jul 11th 04:15 -- 07:00 PM Room Hall B
More from the Same Authors
-
2020 Poster: Optimizing Data Usage via Differentiable Rewards »
Xinyi Wang · Hieu Pham · Paul Michel · Antonios Anastasopoulos · Jaime Carbonell · Graham Neubig -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: AutoML-Zero: Evolving Machine Learning Algorithms From Scratch »
Esteban Real · Chen Liang · David So · Quoc Le -
2019 Poster: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks »
Mingxing Tan · Quoc Le -
2019 Poster: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2019 Poster: The Evolved Transformer »
David So · Quoc Le · Chen Liang -
2019 Oral: The Evolved Transformer »
David So · Quoc Le · Chen Liang -
2019 Oral: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks »
Mingxing Tan · Quoc Le -
2019 Oral: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2018 Poster: Understanding and Simplifying One-Shot Architecture Search »
Gabriel Bender · Pieter-Jan Kindermans · Barret Zoph · Vijay Vasudevan · Quoc Le -
2018 Poster: Learning Longer-term Dependencies in RNNs with Auxiliary Losses »
Trieu H Trinh · Andrew Dai · Thang Luong · Quoc Le -
2018 Oral: Learning Longer-term Dependencies in RNNs with Auxiliary Losses »
Trieu H Trinh · Andrew Dai · Thang Luong · Quoc Le -
2018 Oral: Understanding and Simplifying One-Shot Architecture Search »
Gabriel Bender · Pieter-Jan Kindermans · Barret Zoph · Vijay Vasudevan · Quoc Le -
2018 Poster: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2018 Oral: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2017 Poster: Large-Scale Evolution of Image Classifiers »
Esteban Real · Sherry Moore · Andrew Selle · Saurabh Saxena · Yutaka Leon Suematsu · Jie Tan · Quoc Le · Alexey Kurakin -
2017 Poster: Neural Optimizer Search using Reinforcement Learning »
Irwan Bello · Barret Zoph · Vijay Vasudevan · Quoc Le -
2017 Poster: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean -
2017 Talk: Neural Optimizer Search using Reinforcement Learning »
Irwan Bello · Barret Zoph · Vijay Vasudevan · Quoc Le -
2017 Talk: Large-Scale Evolution of Image Classifiers »
Esteban Real · Sherry Moore · Andrew Selle · Saurabh Saxena · Yutaka Leon Suematsu · Jie Tan · Quoc Le · Alexey Kurakin -
2017 Talk: Device Placement Optimization with Reinforcement Learning »
Azalia Mirhoseini · Hieu Pham · Quoc Le · benoit steiner · Mohammad Norouzi · Rasmus Larsen · Yuefeng Zhou · Naveen Kumar · Samy Bengio · Jeff Dean