Timezone: »
Interacting systems are prevalent in nature, from dynamical systems in physics to complex societal dynamics. The interplay of components can give rise to complex behavior, which can often be explained using a simple model of the system's constituent parts. In this work, we introduce the neural relational inference (NRI) model: an unsupervised model that learns to infer interactions while simultaneously learning the dynamics purely from observational data. Our model takes the form of a variational auto-encoder, in which the latent code represents the underlying interaction graph and the reconstruction is based on graph neural networks. In experiments on simulated physical systems, we show that our NRI model can accurately recover ground-truth interactions in an unsupervised manner. We further demonstrate that we can find an interpretable structure and predict complex dynamics in real motion capture and sports tracking data.
Author Information
Thomas Kipf (University of Amsterdam)
Ethan Fetaya (University of Toronto)
Jackson Wang (Univeristy of Toronto)
Max Welling (University of Amsterdam)
Richard Zemel (Vector Institute)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Neural Relational Inference for Interacting Systems »
Wed Jul 11th 04:15 -- 07:00 PM Room Hall B
More from the Same Authors
-
2020 Workshop: Participatory Approaches to Machine Learning »
Angela Zhou · David Madras · Deborah Raji · Smitha Milli · Bogdan Kulynych · Richard Zemel -
2020 Poster: Involutive MCMC: a Unifying Framework »
Kirill Neklyudov · Max Welling · Evgenii Egorov · Dmitry Vetrov -
2020 Poster: Causal Modeling for Fairness In Dynamical Systems »
Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel -
2020 Poster: Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach »
Martin Mladenov · Elliot Creager · Omer Ben-Porat · Kevin Swersky · Richard Zemel · Craig Boutilier -
2020 Poster: Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling »
Will Grathwohl · Kuan-Chieh Wang · Joern-Henrik Jacobsen · David Duvenaud · Richard Zemel -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Workshop: Joint Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR) »
Sujith Ravi · Zornitsa Kozareva · Lixin Fan · Max Welling · Yurong Chen · Werner Bailer · Brian Kulis · Haoji Hu · Jonathan Dekhtiar · Yingyan Lin · Diana Marculescu -
2019 Workshop: Theoretical Physics for Deep Learning »
Jaehoon Lee · Jeffrey Pennington · Yasaman Bahri · Max Welling · Surya Ganguli · Joan Bruna -
2019 Poster: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Poster: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Oral: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Poster: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Poster: Emerging Convolutions for Generative Normalizing Flows »
Emiel Hoogeboom · Rianne Van den Berg · Max Welling -
2019 Oral: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Oral: Emerging Convolutions for Generative Normalizing Flows »
Emiel Hoogeboom · Rianne Van den Berg · Max Welling -
2019 Poster: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2019 Poster: Gauge Equivariant Convolutional Networks and the Icosahedral CNN »
Taco Cohen · Maurice Weiler · Berkay Kicanaoglu · Max Welling -
2019 Oral: Gauge Equivariant Convolutional Networks and the Icosahedral CNN »
Taco Cohen · Maurice Weiler · Berkay Kicanaoglu · Max Welling -
2019 Oral: On the Universality of Invariant Networks »
Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman -
2018 Poster: Attention-based Deep Multiple Instance Learning »
Maximilian Ilse · Jakub Tomczak · Max Welling -
2018 Poster: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Attention-based Deep Multiple Instance Learning »
Maximilian Ilse · Jakub Tomczak · Max Welling -
2018 Oral: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Poster: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · KiJung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Poster: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · KiJung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2017 Poster: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel -
2017 Talk: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel