Timezone: »
Reinforcement learning (RL) is a powerful technique to train an agent to perform a task; however, an agent that is trained using RL is only capable of achieving the single task that is specified via its reward function. Such an approach does not scale well to settings in which an agent needs to perform a diverse set of tasks, such as navigating to varying positions in a room or moving objects to varying locations. Instead, we propose a method that allows an agent to automatically discover the range of tasks that it is capable of performing in its environment. We use a generator network to propose tasks for the agent to try to accomplish, each task being specified as reaching a certain parametrized subset of the state-space. The generator network is optimized using adversarial training to produce tasks that are always at the appropriate level of difficulty for the agent, thus automatically producing a curriculum. We show that, by using this framework, an agent can efficiently and automatically learn to perform a wide set of tasks without requiring any prior knowledge of its environment, even when only sparse rewards are available. Videos and code available at https://sites.google.com/view/goalgeneration4rl.
Author Information
Carlos Florensa (UC Berkeley)
David Held (Carnegie Mellon University)
David Held is an assistant professor at Carnegie Mellon University in the Robotics Institute. His research focuses on robotic perception for autonomous driving and object manipulation. Prior to coming to CMU, David was a post-doctoral researcher at U.C. Berkeley, and he completed his Ph.D. in Computer Science at Stanford University where he developed methods for perception for autonomous vehicles. David has also worked as an intern on Google’s self-driving car team. David has a B.S. and M.S. in Mechanical Engineering at MIT. David is a recipient of the Google Faculty Research Award in 2017.
Xinyang Geng (UC Berkeley)
Pieter Abbeel (OpenAI / UC Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Automatic Goal Generation for Reinforcement Learning Agents »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #135
More from the Same Authors
-
2021 : Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Michael Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 : Data-Efficient Exploration with Self Play for Atari »
Michael Laskin · Catherine Cang · Ryan Rudes · Pieter Abbeel -
2021 : Hierarchical Few-Shot Imitation with Skill Transition Models »
kourosh hakhamaneshi · Ruihan Zhao · Albert Zhan · Pieter Abbeel · Michael Laskin -
2021 : Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Michael Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2021 : Explaining Reinforcement Learning Policies through Counterfactual Trajectories »
Julius Frost · Olivia Watkins · Eric Weiner · Pieter Abbeel · Trevor Darrell · Bryan Plummer · Kate Saenko -
2022 : Effective Offline RL Needs Going Beyond Pessimism: Representations and Distributional Shift »
Xinyang Geng · Kevin Li · Abhishek Gupta · Aviral Kumar · Sergey Levine -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2022 : Paper 21: Self-Paced Policy Optimization with Safety Constraints »
Wenxuan Zhou · Harshit Sikchi · David Held · Fan Yang -
2023 Poster: Masked Trajectory Models for Prediction, Representation, and Control »
Philipp Wu · Arjun Majumdar · Kevin Stone · Yixin Lin · Igor Mordatch · Pieter Abbeel · Aravind Rajeswaran -
2023 Poster: The Wisdom of Hindsight Makes Language Models Better Instruction Followers »
Tianjun Zhang · Fangchen Liu · Justin Wong · Pieter Abbeel · Joseph E Gonzalez -
2023 Poster: Guiding Pretraining in Reinforcement Learning with Large Language Models »
Yuqing Du · Olivia Watkins · Zihan Wang · Cédric Colas · Trevor Darrell · Pieter Abbeel · Abhishek Gupta · Jacob Andreas -
2023 Poster: Emergent Agentic Transformer from Chain of Hindsight Experience »
Hao Liu · Pieter Abbeel -
2023 Poster: Temporally Consistent Transformers for Video Generation »
Wilson Yan · Danijar Hafner · Stephen James · Pieter Abbeel -
2023 Poster: CLUTR: Curriculum Learning via Unsupervised Task Representation Learning »
Abdus Salam Azad · Izzeddin Gur · Jasper Emhoff · Nathaniel Alexis · Aleksandra Faust · Pieter Abbeel · Ion Stoica -
2023 Poster: Controllability-Aware Unsupervised Skill Discovery »
Seohong Park · Kimin Lee · Youngwoon Lee · Pieter Abbeel -
2023 Poster: Multi-Environment Pretraining Enables Transfer to Action Limited Datasets »
David Venuto · Mengjiao Yang · Pieter Abbeel · Doina Precup · Igor Mordatch · Ofir Nachum -
2023 Poster: Multi-View Masked World Models for Visual Robotic Manipulation »
Younggyo Seo · Junsu Kim · Stephen James · Kimin Lee · Jinwoo Shin · Pieter Abbeel -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2022 : Q/A: David Held »
David Held -
2022 : Invited Speaker: David Held »
David Held -
2022 Poster: Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Xinyang Geng · Aviral Kumar · Sergey Levine -
2022 Poster: Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks »
Litian Liang · Yaosheng Xu · Stephen Mcaleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox -
2022 Poster: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Spotlight: Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks »
Litian Liang · Yaosheng Xu · Stephen Mcaleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox -
2022 Spotlight: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Spotlight: Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Xinyang Geng · Aviral Kumar · Sergey Levine -
2022 Poster: Reinforcement Learning with Action-Free Pre-Training from Videos »
Younggyo Seo · Kimin Lee · Stephen James · Pieter Abbeel -
2022 Spotlight: Reinforcement Learning with Action-Free Pre-Training from Videos »
Younggyo Seo · Kimin Lee · Stephen James · Pieter Abbeel -
2021 : Panel Discussion »
Rosemary Nan Ke · Danijar Hafner · Pieter Abbeel · Chelsea Finn · Chelsea Finn -
2021 : Invited Talk by Pieter Abbeel »
Pieter Abbeel -
2021 Poster: Decoupling Representation Learning from Reinforcement Learning »
Adam Stooke · Kimin Lee · Pieter Abbeel · Michael Laskin -
2021 Spotlight: Decoupling Representation Learning from Reinforcement Learning »
Adam Stooke · Kimin Lee · Pieter Abbeel · Michael Laskin -
2021 Poster: APS: Active Pretraining with Successor Features »
Hao Liu · Pieter Abbeel -
2021 Poster: SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning »
Kimin Lee · Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2021 Spotlight: SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning »
Kimin Lee · Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2021 Oral: APS: Active Pretraining with Successor Features »
Hao Liu · Pieter Abbeel -
2021 Poster: PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training »
Kimin Lee · Laura Smith · Pieter Abbeel -
2021 Oral: PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via Relabeling Experience and Unsupervised Pre-training »
Kimin Lee · Laura Smith · Pieter Abbeel -
2021 Poster: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2021 Poster: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Poster: MSA Transformer »
Roshan Rao · Jason Liu · Robert Verkuil · Joshua Meier · John Canny · Pieter Abbeel · Tom Sercu · Alexander Rives -
2021 Spotlight: MSA Transformer »
Roshan Rao · Jason Liu · Robert Verkuil · Joshua Meier · John Canny · Pieter Abbeel · Tom Sercu · Alexander Rives -
2021 Spotlight: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Spotlight: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2021 : Part 2: Unsupervised Pre-Training in RL »
Pieter Abbeel -
2021 Tutorial: Unsupervised Learning for Reinforcement Learning »
Aravind Srinivas · Pieter Abbeel -
2020 Poster: CURL: Contrastive Unsupervised Representations for Reinforcement Learning »
Michael Laskin · Aravind Srinivas · Pieter Abbeel -
2020 Poster: Hallucinative Topological Memory for Zero-Shot Visual Planning »
Kara Liu · Thanard Kurutach · Christine Tung · Pieter Abbeel · Aviv Tamar -
2020 Poster: Planning to Explore via Self-Supervised World Models »
Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak -
2020 Poster: Responsive Safety in Reinforcement Learning by PID Lagrangian Methods »
Adam Stooke · Joshua Achiam · Pieter Abbeel -
2020 Poster: Variable Skipping for Autoregressive Range Density Estimation »
Eric Liang · Zongheng Yang · Ion Stoica · Pieter Abbeel · Yan Duan · Peter Chen -
2020 Poster: Hierarchically Decoupled Imitation For Morphological Transfer »
Donald Hejna · Lerrel Pinto · Pieter Abbeel -
2019 : Poster Session »
Ivana Balazevic · Minae Kwon · Benjamin Lengerich · Amir Asiaee · Alex Lambert · Wenyu Chen · Yiming Ding · Carlos Florensa · Joseph E Gaudio · Yesmina Jaafra · Boli Fang · Ruoxi Wang · Tian Li · SWAMINATHAN GURUMURTHY · Andy Yan · Kubra Cilingir · Vithursan (Vithu) Thangarasa · Alexander Li · Ryan Lowe -
2019 Workshop: Workshop on Self-Supervised Learning »
Aaron van den Oord · Yusuf Aytar · Carl Doersch · Carl Vondrick · Alec Radford · Pierre Sermanet · Amir Zamir · Pieter Abbeel -
2019 Poster: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables »
Friso Kingma · Pieter Abbeel · Jonathan Ho -
2019 Poster: Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules »
Daniel Ho · Eric Liang · Peter Chen · Ion Stoica · Pieter Abbeel -
2019 Poster: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Poster: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Oral: Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design »
Jonathan Ho · Peter Chen · Aravind Srinivas · Rocky Duan · Pieter Abbeel -
2019 Oral: Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules »
Daniel Ho · Eric Liang · Peter Chen · Ion Stoica · Pieter Abbeel -
2019 Oral: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2018 Poster: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Poster: PixelSNAIL: An Improved Autoregressive Generative Model »
Xi Chen · Nikhil Mishra · Mostafa Rohaninejad · Pieter Abbeel -
2018 Oral: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Oral: PixelSNAIL: An Improved Autoregressive Generative Model »
Xi Chen · Nikhil Mishra · Mostafa Rohaninejad · Pieter Abbeel -
2018 Poster: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2018 Poster: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Poster: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Oral: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2017 Poster: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Poster: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Poster: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Poster: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel -
2017 Talk: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Talk: Prediction and Control with Temporal Segment Models »
Nikhil Mishra · Pieter Abbeel · Igor Mordatch -
2017 Talk: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Talk: Constrained Policy Optimization »
Joshua Achiam · David Held · Aviv Tamar · Pieter Abbeel