Oral
Learning Implicit Generative Models with the Method of Learned Moments
Suman Ravuri · Shakir Mohamed · Mihaela Rosca · Oriol Vinyals

Wed Jul 11th 04:40 -- 04:50 PM @ A7

We propose a method of moments (MoM) algorithm for training large-scale implicit generative models. Moment estimation in this setting encounters two problems: it is often difficult to define the millions of moments needed to learn the model parameters, and it is hard to determine which properties are useful when specifying moments. To address the first issue, we introduce a moment network, and define the moments as the network's hidden units and the gradient of the network's output with respect to its parameters. To tackle the second problem, we use asymptotic theory to highlight desiderata for moments -- namely they should minimize the asymptotic variance of estimated model parameters -- and introduce an objective to learn better moments. The sequence of objectives created by this Method of Learned Moments (MoLM) can train high-quality neural image samplers. On CIFAR-10, we demonstrate that MoLM-trained generators achieve significantly higher Inception Scores and lower Frechet Inception Distances than those trained with gradient penalty-regularized and spectrally-normalized adversarial objectives. These generators also achieve nearly perfect Multi-Scale Structural Similarity Scores on CelebA, and can create high-quality samples of 128x128 images.

Author Information

Suman Ravuri (DeepMind)
Shakir Mohamed (DeepMind)
Mihaela Rosca (DeepMind)
Oriol Vinyals (DeepMind)

Oriol Vinyals is a Research Scientist at Google. He works in deep learning with the Google Brain team. Oriol holds a Ph.D. in EECS from University of California, Berkeley, and a Masters degree from University of California, San Diego. He is a recipient of the 2011 Microsoft Research PhD Fellowship. He was an early adopter of the new deep learning wave at Berkeley, and in his thesis he focused on non-convex optimization and recurrent neural networks. At Google Brain he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, language, and vision.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors