Timezone: »
We propose a method of moments (MoM) algorithm for training large-scale implicit generative models. Moment estimation in this setting encounters two problems: it is often difficult to define the millions of moments needed to learn the model parameters, and it is hard to determine which properties are useful when specifying moments. To address the first issue, we introduce a moment network, and define the moments as the network's hidden units and the gradient of the network's output with respect to its parameters. To tackle the second problem, we use asymptotic theory to highlight desiderata for moments -- namely they should minimize the asymptotic variance of estimated model parameters -- and introduce an objective to learn better moments. The sequence of objectives created by this Method of Learned Moments (MoLM) can train high-quality neural image samplers. On CIFAR-10, we demonstrate that MoLM-trained generators achieve significantly higher Inception Scores and lower Frechet Inception Distances than those trained with gradient penalty-regularized and spectrally-normalized adversarial objectives. These generators also achieve nearly perfect Multi-Scale Structural Similarity Scores on CelebA, and can create high-quality samples of 128x128 images.
Author Information
Suman Ravuri (DeepMind)
Shakir Mohamed (DeepMind)
Shakir Mohamed works on technical and sociotechnical questions in machine learning research, working on problems in machine learning principles, applied problems in healthcare and environment, and ethics and diversity. Shakir is a Director for Research at DeepMind in London, an Associate Fellow at the Leverhulme Centre for the Future of Intelligence, and an Honorary Professor of University College London. Shakir is also a founder and trustee of the Deep Learning Indaba, a grassroots charity whose work is to build pan-African capacity and leadership in AI. Amongst other roles, Shakir served as the senior programme chair for ICLR 2021, and as the General Chair for NeurIPS 2022. Shakir also serves on the Board of Directors for some of the leading conferences in the field of machine learning and AI (ICML, ICLR, NeurIPS), is a member of the Royal Society diversity and inclusion committee, and on the international scientific advisory committee for the pan-Canadian AI strategy. Shakir is from South Africa, completed a postdoc at the University of British Columbia, received his PhD from the University of Cambridge, and received his masters and undergraduate degrees in Electrical and Information engineering from the University of the Witwatersrand, Johannesburg.
Mihaela Rosca (DeepMind)
Oriol Vinyals (DeepMind)
Oriol Vinyals is a Research Scientist at Google. He works in deep learning with the Google Brain team. Oriol holds a Ph.D. in EECS from University of California, Berkeley, and a Masters degree from University of California, San Diego. He is a recipient of the 2011 Microsoft Research PhD Fellowship. He was an early adopter of the new deep learning wave at Berkeley, and in his thesis he focused on non-convex optimization and recurrent neural networks. At Google Brain he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, language, and vision.
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Learning Implicit Generative Models with the Method of Learned Moments »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #112
More from the Same Authors
-
2023 : Investigating the Edge of Stability Phenomenon in Reinforcement Learning »
Rares Iordan · Mihaela Rosca · Marc Deisenroth -
2023 : Implicit regularisation in stochastic gradient descent: from single-objective to two-player games »
Mihaela Rosca · Marc Deisenroth -
2022 : Chinchillas, Flamingos, and Gatos: Few-Shot Learning through Pre-training »
Oriol Vinyals -
2022 Workshop: Continuous Time Perspectives in Machine Learning »
Mihaela Rosca · Chongli Qin · Julien Mairal · Marc Deisenroth -
2022 Poster: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Spotlight: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Poster: Improving Language Models by Retrieving from Trillions of Tokens »
Sebastian Borgeaud · Arthur Mensch · Jordan Hoffmann · Trevor Cai · Eliza Rutherford · Katie Millican · George van den Driessche · Jean-Baptiste Lespiau · Bogdan Damoc · Aidan Clark · Diego de Las Casas · Aurelia Guy · Jacob Menick · Roman Ring · Tom Hennigan · Saffron Huang · Loren Maggiore · Chris Jones · Albin Cassirer · Andy Brock · Michela Paganini · Geoffrey Irving · Oriol Vinyals · Simon Osindero · Karen Simonyan · Jack Rae · Erich Elsen · Laurent Sifre -
2022 Poster: Unified Scaling Laws for Routed Language Models »
Aidan Clark · Diego de Las Casas · Aurelia Guy · Arthur Mensch · Michela Paganini · Jordan Hoffmann · Bogdan Damoc · Blake Hechtman · Trevor Cai · Sebastian Borgeaud · George van den Driessche · Eliza Rutherford · Tom Hennigan · Matthew Johnson · Albin Cassirer · Chris Jones · Elena Buchatskaya · David Budden · Laurent Sifre · Simon Osindero · Oriol Vinyals · Marc'Aurelio Ranzato · Jack Rae · Erich Elsen · Koray Kavukcuoglu · Karen Simonyan -
2022 Spotlight: Improving Language Models by Retrieving from Trillions of Tokens »
Sebastian Borgeaud · Arthur Mensch · Jordan Hoffmann · Trevor Cai · Eliza Rutherford · Katie Millican · George van den Driessche · Jean-Baptiste Lespiau · Bogdan Damoc · Aidan Clark · Diego de Las Casas · Aurelia Guy · Jacob Menick · Roman Ring · Tom Hennigan · Saffron Huang · Loren Maggiore · Chris Jones · Albin Cassirer · Andy Brock · Michela Paganini · Geoffrey Irving · Oriol Vinyals · Simon Osindero · Karen Simonyan · Jack Rae · Erich Elsen · Laurent Sifre -
2022 Oral: Unified Scaling Laws for Routed Language Models »
Aidan Clark · Diego de Las Casas · Aurelia Guy · Arthur Mensch · Michela Paganini · Jordan Hoffmann · Bogdan Damoc · Blake Hechtman · Trevor Cai · Sebastian Borgeaud · George van den Driessche · Eliza Rutherford · Tom Hennigan · Matthew Johnson · Albin Cassirer · Chris Jones · Elena Buchatskaya · David Budden · Laurent Sifre · Simon Osindero · Oriol Vinyals · Marc'Aurelio Ranzato · Jack Rae · Erich Elsen · Koray Kavukcuoglu · Karen Simonyan -
2021 Poster: Discretization Drift in Two-Player Games »
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett -
2021 Spotlight: Discretization Drift in Two-Player Games »
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett -
2021 Poster: Spectral Normalisation for Deep Reinforcement Learning: An Optimisation Perspective »
Florin Gogianu · Tudor Berariu · Mihaela Rosca · Claudia Clopath · Lucian Busoniu · Razvan Pascanu -
2021 Spotlight: Spectral Normalisation for Deep Reinforcement Learning: An Optimisation Perspective »
Florin Gogianu · Tudor Berariu · Mihaela Rosca · Claudia Clopath · Lucian Busoniu · Razvan Pascanu -
2021 Poster: Vector Quantized Models for Planning »
Sherjil Ozair · Yazhe Li · Ali Razavi · Ioannis Antonoglou · Aäron van den Oord · Oriol Vinyals -
2021 Poster: Perceiver: General Perception with Iterative Attention »
Drew Jaegle · Felix Axel Gimeno Gil · Andy Brock · Oriol Vinyals · Andrew Zisserman · Joao Carreira -
2021 Spotlight: Vector Quantized Models for Planning »
Sherjil Ozair · Yazhe Li · Ali Razavi · Ioannis Antonoglou · Aäron van den Oord · Oriol Vinyals -
2021 Spotlight: Perceiver: General Perception with Iterative Attention »
Drew Jaegle · Felix Axel Gimeno Gil · Andy Brock · Oriol Vinyals · Andrew Zisserman · Joao Carreira -
2019 Poster: Deep Compressed Sensing »
Yan Wu · Mihaela Rosca · Timothy Lillicrap -
2019 Oral: Deep Compressed Sensing »
Yan Wu · Mihaela Rosca · Timothy Lillicrap -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2018 Poster: Parallel WaveNet: Fast High-Fidelity Speech Synthesis »
Aäron van den Oord · Yazhe Li · Igor Babuschkin · Karen Simonyan · Oriol Vinyals · Koray Kavukcuoglu · George van den Driessche · Edward Lockhart · Luis C Cobo · Florian Stimberg · Norman Casagrande · Dominik Grewe · Seb Noury · Sander Dieleman · Erich Elsen · Nal Kalchbrenner · Heiga Zen · Alex Graves · Helen King · Tom Walters · Dan Belov · Demis Hassabis -
2018 Oral: Parallel WaveNet: Fast High-Fidelity Speech Synthesis »
Aäron van den Oord · Yazhe Li · Igor Babuschkin · Karen Simonyan · Oriol Vinyals · Koray Kavukcuoglu · George van den Driessche · Edward Lockhart · Luis C Cobo · Florian Stimberg · Norman Casagrande · Dominik Grewe · Seb Noury · Sander Dieleman · Erich Elsen · Nal Kalchbrenner · Heiga Zen · Alex Graves · Helen King · Tom Walters · Dan Belov · Demis Hassabis -
2018 Poster: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Oral: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Workshop: Video Games and Machine Learning »
Gabriel Synnaeve · Julian Togelius · Tom Schaul · Oriol Vinyals · Nicolas Usunier -
2017 Poster: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Poster: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Talk: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Talk: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Poster: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · Koray Kavukcuoglu -
2017 Poster: Understanding Synthetic Gradients and Decoupled Neural Interfaces »
Wojciech Czarnecki · Grzegorz Świrszcz · Max Jaderberg · Simon Osindero · Oriol Vinyals · Koray Kavukcuoglu -
2017 Poster: Video Pixel Networks »
Nal Kalchbrenner · Karen Simonyan · Aäron van den Oord · Ivo Danihelka · Oriol Vinyals · Alex Graves · Koray Kavukcuoglu -
2017 Talk: Video Pixel Networks »
Nal Kalchbrenner · Karen Simonyan · Aäron van den Oord · Ivo Danihelka · Oriol Vinyals · Alex Graves · Koray Kavukcuoglu -
2017 Talk: Understanding Synthetic Gradients and Decoupled Neural Interfaces »
Wojciech Czarnecki · Grzegorz Świrszcz · Max Jaderberg · Simon Osindero · Oriol Vinyals · Koray Kavukcuoglu -
2017 Talk: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · Koray Kavukcuoglu -
2017 Tutorial: Sequence-To-Sequence Modeling with Neural Networks »
Oriol Vinyals · Navdeep Jaitly