Timezone: »
This paper develops a novel methodology for using symbolic knowledge in deep learning. From first principles, we derive a semantic loss function that bridges between neural output vectors and logical constraints. This loss function captureshow close the neural network is to satisfying the constraints on its output. An experimental evaluation shows that it effectively guides the learner to achieve (near-)state-of-the-art results on semi-supervised multi-class classification. Moreover, it significantly increases the ability of the neural network to predict structured objects, such as rankings and paths. These discrete concepts are tremendously difficult to learn, and benefit from a tight integration of deep learning and symbolic reasoning methods.
Author Information
Jingyi Xu (University of California, Los Angeles)
Zilu Zhang (Peking University)
Tal Friedman (UCLA)
Yitao Liang (UCLA)
Guy Van den Broeck (University of California, Los Angeles)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: A Semantic Loss Function for Deep Learning with Symbolic Knowledge »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #180
More from the Same Authors
-
2023 Poster: Tractable Control for Auto-regressive Language Generation »
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck -
2023 Poster: Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits »
Xuejie Liu · Anji Liu · Guy Van den Broeck · Yitao Liang -
2023 Oral: Tractable Control for Auto-regressive Language Generation »
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck -
2022 : Session 3: New Computational Technologies for Reasoning »
Armando Solar-Lezama · Guy Van den Broeck · Jan-Willem van de Meent · Charles Sutton -
2021 Poster: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2021 Oral: Probabilistic Generating Circuits »
Honghua Zhang · Brendan Juba · Guy Van den Broeck -
2020 : On the Relationship Between Probabilistic Circuits and Determinantal Point Processes »
Honghua Zhang · Steven Holtzen · Guy Van den Broeck -
2020 Poster: Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits »
Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani -
2020 Poster: Scaling up Hybrid Probabilistic Inference with Logical and Arithmetic Constraints via Message Passing »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2018 Poster: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein -
2018 Oral: Sound Abstraction and Decomposition of Probabilistic Programs »
Steven Holtzen · Guy Van den Broeck · Todd Millstein