Timezone: »
We present a novel cost function for semi-supervised learning of neural networks that encourages compact clustering of the latent space to facilitate separation. The key idea is to dynamically create a graph over embeddings of labeled and unlabeled samples of a training batch to capture underlying structure in feature space, and use label propagation to estimate its high and low density regions. We then devise a cost function based on Markov chains on the graph that regularizes the latent space to form a single compact cluster per class, while avoiding to disturb existing clusters during optimization. We evaluate our approach on three benchmarks and compare to state-of-the art with promising results. Our approach combines the benefits of graph-based regularization with efficient, inductive inference, does not require modifications to a network architecture, and can thus be easily applied to existing networks to enable an effective use of unlabeled data.
Author Information
Konstantinos Kamnitsas (Imperial College London)
Daniel C. Castro (Imperial College London)
Loic Le Folgoc (Imperial College London)
Ian Walker (Imperial College London)
Ryutaro Tanno (University College London)
Daniel Rueckert (Imperial College London)
Ben Glocker (Imperial College London)
Antonio Criminisi (Microsoft)
Aditya Nori (Microsoft Research Cambridge)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Semi-Supervised Learning via Compact Latent Space Clustering »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #50
More from the Same Authors
-
2021 : Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation »
Alexander Ziller · Dmitrii Usynin · Moritz Knolle · Kritika Prakash · Andrew Trask · Marcus Makowski · Rickmer Braren · Daniel Rueckert · Georgios Kaissis -
2021 : Differentially private training of neural networks with Langevin dynamics for calibrated predictive uncertainty »
Moritz Knolle · Alexander Ziller · Dmitrii Usynin · Rickmer Braren · Marcus Makowski · Daniel Rueckert · Georgios Kaissis -
2021 : Hierarchical Analysis of Visual COVID-19 Features from Chest Radiographs »
Shruthi Bannur · Ozan Oktay · Melanie Bernhardt · Anton Schwaighofer · Besmira Nushi · Aditya Nori · Javier Alvarez-Valle · Daniel Coelho de Castro -
2023 : Mask, Stitch, and Re-Sample: Enhancing Robustness and Generalizability in Anomaly Detection through Automatic Diffusion Models »
Cosmin Bercea · Michael Neumayr · Daniel Rueckert · Julia Schnabel -
2023 Poster: High Fidelity Image Counterfactuals with Probabilistic Causal Models »
Fabio De Sousa Ribeiro · Tian Xia · Miguel Monteiro · Nick Pawlowski · Ben Glocker -
2020 Poster: Alleviating Privacy Attacks via Causal Learning »
Shruti Tople · Amit Sharma · Aditya Nori -
2019 Poster: Adaptive Neural Trees »
Ryutaro Tanno · Kai Arulkumaran · Daniel Alexander · Antonio Criminisi · Aditya Nori -
2019 Poster: Graph Convolutional Gaussian Processes »
Ian Walker · Ben Glocker -
2019 Oral: Adaptive Neural Trees »
Ryutaro Tanno · Kai Arulkumaran · Daniel Alexander · Antonio Criminisi · Aditya Nori -
2019 Oral: Graph Convolutional Gaussian Processes »
Ian Walker · Ben Glocker