Timezone: »
Oral
Leveraging Well-Conditioned Bases: Streaming and Distributed Summaries in Minkowski $p$-Norms
Charlie Dickens · Graham Cormode · David Woodruff
Work on approximate linear algebra has led to efficient distributed and streaming algorithms for problems such as approximate matrix multiplication, low rank approximation, and regression, primarily for the Euclidean norm $\ell_2$. We study other $\ell_p$ norms, which are more robust for $p < 2$, and can be used to find outliers for $p > 2$. Unlike previous algorithms for such norms, we give algorithms that are (1) deterministic, (2) work simultaneouslyfor every $p \geq 1$, including $p = \infty$, and (3) can be implemented in both distributed and streaming environments. We study $\ell_p$-regression, entrywise $\ell_p$-low rank approximation, and versions of approximate matrix multiplication.
Author Information
Charlie Dickens (Alan Turing Institute & University of Warwick)
Graham Cormode (University of Warwick)
David Woodruff (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Leveraging Well-Conditioned Bases: Streaming and Distributed Summaries in Minkowski $p$-Norms »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #40
More from the Same Authors
-
2023 : Federated Experiment Design under Distributed Differential Privacy »
Wei-Ning Chen · Graham Cormode · Akash Bharadwaj · Peter Romov · Ayfer Ozgur -
2023 Poster: Improved Algorithms for White-Box Adversarial Streams »
Ying Feng · David Woodruff -
2023 Poster: Sharper Bounds for $\ell_p$ Sensitivity Sampling »
David Woodruff · Taisuke Yasuda -
2023 Oral: Sketch-Flip-Merge: Mergeable Sketches for Private Distinct Counting »
Jonathan Hehir · Daniel Ting · Graham Cormode -
2023 Poster: Sketch-Flip-Merge: Mergeable Sketches for Private Distinct Counting »
Jonathan Hehir · Daniel Ting · Graham Cormode -
2023 Oral: Sharper Bounds for $\ell_p$ Sensitivity Sampling »
David Woodruff · Taisuke Yasuda -
2023 Poster: Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix Factorization »
Ameya Velingker · Maximilian Vötsch · David Woodruff · Samson Zhou -
2022 Poster: Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra »
Nadiia Chepurko · Kenneth Clarkson · Lior Horesh · Honghao Lin · David Woodruff -
2022 Spotlight: Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra »
Nadiia Chepurko · Kenneth Clarkson · Lior Horesh · Honghao Lin · David Woodruff -
2019 Poster: Dimensionality Reduction for Tukey Regression »
Kenneth Clarkson · Ruosong Wang · David Woodruff -
2019 Poster: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2019 Poster: Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel $k$-means Clustering »
Taisuke Yasuda · David Woodruff · Manuel Fernandez -
2019 Oral: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2019 Oral: Dimensionality Reduction for Tukey Regression »
Kenneth Clarkson · Ruosong Wang · David Woodruff -
2019 Oral: Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel $k$-means Clustering »
Taisuke Yasuda · David Woodruff · Manuel Fernandez -
2018 Poster: Matrix Norms in Data Streams: Faster, Multi-Pass and Row-Order »
Vladimir Braverman · Stephen Chestnut · Robert Krauthgamer · Yi Li · David Woodruff · Lin Yang -
2018 Oral: Matrix Norms in Data Streams: Faster, Multi-Pass and Row-Order »
Vladimir Braverman · Stephen Chestnut · Robert Krauthgamer · Yi Li · David Woodruff · Lin Yang