Timezone: »
We establish a data-dependent notion of algorithmic stability for Stochastic Gradient Descent (SGD), and employ it to develop novel generalization bounds. This is in contrast to previous distribution-free algorithmic stability results for SGD which depend on the worst-case constants. By virtue of the data-dependent argument, our bounds provide new insights into learning with SGD on convex and non-convex problems. In the convex case, we show that the bound on the generalization error depends on the risk at the initialization point. In the non-convex case, we prove that the expected curvature of the objective function around the initialization point has crucial influence on the generalization error. In both cases, our results suggest a simple data-driven strategy to stabilize SGD by pre-screening its initialization. As a corollary, our results allow us to show optimistic generalization bounds that exhibit fast convergence rates for SGD subject to a vanishing empirical risk and low noise of stochastic gradient.
Author Information
Ilja Kuzborskij (University of Milan)
Christoph H. Lampert (IST Austria)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Data-Dependent Stability of Stochastic Gradient Descent »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #164
More from the Same Authors
-
2021 : Invited talk1:Q&A »
Christoph H. Lampert -
2021 Poster: A Distribution-dependent Analysis of Meta Learning »
Mikhail Konobeev · Ilja Kuzborskij · Csaba Szepesvari -
2021 Spotlight: A Distribution-dependent Analysis of Meta Learning »
Mikhail Konobeev · Ilja Kuzborskij · Csaba Szepesvari -
2020 : Invited Talk: Christoph H. Lampert "Learning Theory for Continual and Meta-Learning" »
Christoph H. Lampert -
2020 Poster: On the Sample Complexity of Adversarial Multi-Source PAC Learning »
Nikola Konstantinov · Elias Frantar · Dan Alistarh · Christoph H. Lampert -
2019 Poster: Robust Learning from Untrusted Sources »
Nikola Konstantinov · Christoph H. Lampert -
2019 Poster: Towards Understanding Knowledge Distillation »
Mary Phuong · Christoph H. Lampert -
2019 Oral: Towards Understanding Knowledge Distillation »
Mary Phuong · Christoph H. Lampert -
2019 Oral: Robust Learning from Untrusted Sources »
Nikola Konstantinov · Christoph H. Lampert -
2018 Poster: Learning equations for extrapolation and control »
Subham S Sahoo · Christoph H. Lampert · Georg Martius -
2018 Oral: Learning equations for extrapolation and control »
Subham S Sahoo · Christoph H. Lampert · Georg Martius -
2017 Poster: PixelCNN Models with Auxiliary Variables for Natural Image Modeling »
Alexander Kolesnikov · Christoph H. Lampert -
2017 Poster: Multi-task Learning with Labeled and Unlabeled Tasks »
Anastasia Pentina · Christoph H. Lampert -
2017 Talk: Multi-task Learning with Labeled and Unlabeled Tasks »
Anastasia Pentina · Christoph H. Lampert -
2017 Talk: PixelCNN Models with Auxiliary Variables for Natural Image Modeling »
Alexander Kolesnikov · Christoph H. Lampert