Timezone: »
In transfer learning, what and how to transfer are two primary issues to be addressed, as different transfer learning algorithms applied between a source and a target domain result in different knowledge transferred and thereby the performance improvement in the target domain. Determining the optimal one that maximizes the performance improvement requires either exhaustive exploration or considerable expertise. Meanwhile, it is widely accepted in educational psychology that human beings improve transfer learning skills of deciding what to transfer through meta-cognitive reflection on inductive transfer learning practices. Motivated by this, we propose a novel transfer learning framework known as Learning to Transfer (L2T) to automatically determine what and how to transfer are the best by leveraging previous transfer learning experiences. We establish the L2T framework in two stages: 1) we learn a reflection function encrypting transfer learning skills from experiences; and 2) we infer what and how to transfer are the best for a future pair of domains by optimizing the reflection function. We also theoretically analyse the algorithmic stability and generalization bound of L2T, and empirically demonstrate its superiority over several state-of-the-art transfer learning algorithms.
Author Information
Ying WEI (Tencent AI Lab)
Yu Zhang (Hong Kong UST)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
Qiang Yang (Hong Kong UST)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Transfer Learning via Learning to Transfer »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #144
More from the Same Authors
-
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 : Hypergraph Convolutional Networks via Equivalence Between Hypergraphs and Undirected Graphs »
Jiying Zhang · fuyang li · Xi Xiao · Tingyang Xu · Yu Rong · Junzhou Huang · Yatao Bian -
2022 Poster: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Spotlight: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Poster: The Role of Deconfounding in Meta-learning »
Yinjie Jiang · Zhengyu Chen · Kun Kuang · Luotian Yuan · Xinhai Ye · Zhihua Wang · Fei Wu · Ying WEI -
2022 Poster: Frustratingly Easy Transferability Estimation »
Long-Kai Huang · Junzhou Huang · Yu Rong · Qiang Yang · Ying WEI -
2022 Spotlight: The Role of Deconfounding in Meta-learning »
Yinjie Jiang · Zhengyu Chen · Kun Kuang · Luotian Yuan · Xinhai Ye · Zhihua Wang · Fei Wu · Ying WEI -
2022 Spotlight: Frustratingly Easy Transferability Estimation »
Long-Kai Huang · Junzhou Huang · Yu Rong · Qiang Yang · Ying WEI -
2021 Poster: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Spotlight: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2021 Spotlight: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2020 Poster: Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search »
Yong Guo · Yaofo Chen · Yin Zheng · Peilin Zhao · Jian Chen · Junzhou Huang · Mingkui Tan -
2019 Poster: Hierarchically Structured Meta-learning »
Huaxiu Yao · Ying WEI · Junzhou Huang · Zhenhui (Jessie) Li -
2019 Poster: RaFM: Rank-Aware Factorization Machines »
Xiaoshuang Chen · Yin Zheng · Jiaxing Wang · Wenye Ma · Junzhou Huang -
2019 Oral: Hierarchically Structured Meta-learning »
Huaxiu Yao · Ying WEI · Junzhou Huang · Zhenhui (Jessie) Li -
2019 Oral: RaFM: Rank-Aware Factorization Machines »
Xiaoshuang Chen · Yin Zheng · Jiaxing Wang · Wenye Ma · Junzhou Huang -
2019 Poster: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2019 Oral: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2018 Poster: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Poster: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Oral: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Oral: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang