Timezone: »
Oral
Lipschitz Continuity in Model-based Reinforcement Learning
Kavosh Asadi · Dipendra Misra · Michael L. Littman
We examine the impact of learning Lipschitz continuous models in the context of model-based reinforcement learning. We provide a novel bound on multi-step prediction error of Lipschitz models where we quantify the error using the Wasserstein metric. We go on to prove an error bound for the value-function estimate arising from Lipschitz models and show that the estimated value function is itself Lipschitz. We conclude with empirical results that show the benefits of controlling the Lipschitz constant of neural-network models.
Author Information
Kavosh Asadi (Brown University)
Dipendra Misra (Cornell University)
Michael L. Littman (Brown University)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Lipschitz Continuity in Model-based Reinforcement Learning »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #173
More from the Same Authors
-
2021 : Bad-Policy Density: A Measure of Reinforcement-Learning Hardness »
David Abel · Cameron Allen · Dilip Arumugam · D Ellis Hershkowitz · Michael L. Littman · Lawson Wong -
2021 : Convergence of a Human-in-the-Loop Policy-Gradient Algorithm With Eligibility Trace Under Reward, Policy, and Advantage Feedback »
Ishaan Shah · David Halpern · Michael L. Littman · Kavosh Asadi -
2023 : Specifying Behavior Preference with Tiered Reward Functions »
Zhiyuan Zhou · Henry Sowerby · Michael L. Littman -
2023 Poster: Meta-learning Parameterized Skills »
Haotian Fu · Shangqun Yu · Saket Tiwari · Michael L. Littman · George Konidaris -
2021 : Bad-Policy Density: A Measure of Reinforcement-Learning Hardness »
David Abel · Cameron Allen · Dilip Arumugam · D Ellis Hershkowitz · Michael L. Littman · Lawson Wong -
2019 Poster: Finding Options that Minimize Planning Time »
Yuu Jinnai · David Abel · David Hershkowitz · Michael L. Littman · George Konidaris -
2019 Oral: Finding Options that Minimize Planning Time »
Yuu Jinnai · David Abel · David Hershkowitz · Michael L. Littman · George Konidaris -
2018 Poster: State Abstractions for Lifelong Reinforcement Learning »
David Abel · Dilip S. Arumugam · Lucas Lehnert · Michael L. Littman -
2018 Oral: State Abstractions for Lifelong Reinforcement Learning »
David Abel · Dilip S. Arumugam · Lucas Lehnert · Michael L. Littman -
2018 Poster: Policy and Value Transfer in Lifelong Reinforcement Learning »
David Abel · Yuu Jinnai · Sophie Guo · George Konidaris · Michael L. Littman -
2018 Oral: Policy and Value Transfer in Lifelong Reinforcement Learning »
David Abel · Yuu Jinnai · Sophie Guo · George Konidaris · Michael L. Littman -
2017 Poster: An Alternative Softmax Operator for Reinforcement Learning »
Kavosh Asadi · Michael L. Littman -
2017 Poster: Interactive Learning from Policy-Dependent Human Feedback »
James MacGlashan · Mark Ho · Robert Loftin · Bei Peng · Guan Wang · David L Roberts · Matthew E. Taylor · Michael L. Littman -
2017 Talk: Interactive Learning from Policy-Dependent Human Feedback »
James MacGlashan · Mark Ho · Robert Loftin · Bei Peng · Guan Wang · David L Roberts · Matthew E. Taylor · Michael L. Littman -
2017 Talk: An Alternative Softmax Operator for Reinforcement Learning »
Kavosh Asadi · Michael L. Littman