Timezone: »
Learning graph representations via low-dimensional embeddings that preserve relevant network properties is an important class of problems in machine learning. We here present a novel method to embed directed acyclic graphs. Following prior work, we first advocate for using hyperbolic spaces which provably model tree-like structures better than Euclidean geometry. Second, we view hierarchical relations as partial orders defined using a family of nested geodesically convex cones. We prove that these entailment cones admit an optimal shape with a closed form expression both in the Euclidean and hyperbolic spaces, and they canonically define the embedding learning process. Experiments show significant improvements of our method over strong recent baselines both in terms of representational capacity and generalization.
Author Information
Octavian-Eugen Ganea (ETH Zurich)
Gary Becigneul (ETHZ)
Thomas Hofmann (ETH Zurich)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Hyperbolic Entailment Cones for Learning Hierarchical Embeddings »
Wed. Jul 11th 04:15 -- 07:00 PM Room Hall B #100
More from the Same Authors
-
2023 Poster: The Hessian perspective into the Nature of Convolutional Neural Networks »
Sidak Pal Singh · Thomas Hofmann · Bernhard Schölkopf -
2023 Poster: Random Teachers are Good Teachers »
Felix Sarnthein · Gregor Bachmann · Sotiris Anagnostidis · Thomas Hofmann -
2022 Poster: How Tempering Fixes Data Augmentation in Bayesian Neural Networks »
Gregor Bachmann · Lorenzo Noci · Thomas Hofmann -
2022 Oral: How Tempering Fixes Data Augmentation in Bayesian Neural Networks »
Gregor Bachmann · Lorenzo Noci · Thomas Hofmann -
2021 Poster: Uniform Convergence, Adversarial Spheres and a Simple Remedy »
Gregor Bachmann · Seyed Moosavi · Thomas Hofmann -
2021 Spotlight: Uniform Convergence, Adversarial Spheres and a Simple Remedy »
Gregor Bachmann · Seyed Moosavi · Thomas Hofmann -
2019 Poster: Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities »
Octavian-Eugen Ganea · Sylvain Gelly · Gary Becigneul · Aliaksei Severyn -
2019 Oral: Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities »
Octavian-Eugen Ganea · Sylvain Gelly · Gary Becigneul · Aliaksei Severyn -
2019 Poster: The Odds are Odd: A Statistical Test for Detecting Adversarial Examples »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2019 Oral: The Odds are Odd: A Statistical Test for Detecting Adversarial Examples »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2018 Poster: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Oral: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Poster: Escaping Saddles with Stochastic Gradients »
Hadi Daneshmand · Jonas Kohler · Aurelien Lucchi · Thomas Hofmann -
2018 Oral: Escaping Saddles with Stochastic Gradients »
Hadi Daneshmand · Jonas Kohler · Aurelien Lucchi · Thomas Hofmann