Timezone: »
Existing multi-agent reinforcement learning methods are limited typically to a small number of agents. When the agent number increases largely, the learning becomes intractable due to the curse of the dimensionality and the exponential growth of agent interactions. In this paper, we present Mean Field Reinforcement Learning where the interactions within the population of agents are approximated by those between a single agent and the average effect from the overall population or neighboring agents; the interplay between the two entities is mutually reinforced: the learning of the individual agent's optimal policy depends on the dynamics of the population, while the dynamics of the population change according to the collective patterns of the individual policies. We develop practical mean field Q-learning and mean field Actor-Critic algorithms and analyze the convergence of the solution to Nash equilibrium. Experiments on Gaussian squeeze, Ising model, and battle games justify the learning effectiveness of our mean field approaches. In addition, we report the first result to solve the Ising model via model-free reinforcement learning methods.
Author Information
Yaodong Yang (University College London)
Rui Luo (UCL)
Minne Li (University College London)
Ming Zhou (Shanghai Jiao Tong University)
Weinan Zhang (Shanghai Jiao Tong University)
Jun Wang (UCL)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Mean Field Multi-Agent Reinforcement Learning »
Fri. Jul 13th 03:00 -- 03:20 PM Room A1
More from the Same Authors
-
2023 Poster: GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models »
Hanjing Wang · Man-Kit Sit · Congjie He · Ying Wen · Weinan Zhang · Jun Wang · Yaodong Yang · Luo Mai -
2022 Poster: Understanding Policy Gradient Algorithms: A Sensitivity-Based Approach »
Shuang Wu · Ling Shi · Jun Wang · Guangjian Tian -
2022 Poster: Plan Your Target and Learn Your Skills: Transferable State-Only Imitation Learning via Decoupled Policy Optimization »
Minghuan Liu · Zhengbang Zhu · Yuzheng Zhuang · Weinan Zhang · Jianye Hao · Yong Yu · Jun Wang -
2022 Spotlight: Understanding Policy Gradient Algorithms: A Sensitivity-Based Approach »
Shuang Wu · Ling Shi · Jun Wang · Guangjian Tian -
2022 Spotlight: Plan Your Target and Learn Your Skills: Transferable State-Only Imitation Learning via Decoupled Policy Optimization »
Minghuan Liu · Zhengbang Zhu · Yuzheng Zhuang · Weinan Zhang · Jianye Hao · Yong Yu · Jun Wang -
2021 Poster: Learning in Nonzero-Sum Stochastic Games with Potentials »
David Mguni · Yutong Wu · Yali Du · Yaodong Yang · Ziyi Wang · Minne Li · Ying Wen · Joel Jennings · Jun Wang -
2021 Poster: Modelling Behavioural Diversity for Learning in Open-Ended Games »
Nicolas Perez-Nieves · Yaodong Yang · Oliver Slumbers · David Mguni · Ying Wen · Jun Wang -
2021 Poster: Estimating $\alpha$-Rank from A Few Entries with Low Rank Matrix Completion »
Yali Du · Xue Yan · Xu Chen · Jun Wang · Haifeng Zhang -
2021 Spotlight: Learning in Nonzero-Sum Stochastic Games with Potentials »
David Mguni · Yutong Wu · Yali Du · Yaodong Yang · Ziyi Wang · Minne Li · Ying Wen · Joel Jennings · Jun Wang -
2021 Oral: Modelling Behavioural Diversity for Learning in Open-Ended Games »
Nicolas Perez-Nieves · Yaodong Yang · Oliver Slumbers · David Mguni · Ying Wen · Jun Wang -
2021 Spotlight: Estimating $\alpha$-Rank from A Few Entries with Low Rank Matrix Completion »
Yali Du · Xue Yan · Xu Chen · Jun Wang · Haifeng Zhang -
2020 Poster: Multi-Agent Determinantal Q-Learning »
Yaodong Yang · Ying Wen · Jun Wang · Liheng Chen · Kun Shao · David Mguni · Weinan Zhang -
2020 Poster: Bidirectional Model-based Policy Optimization »
Hang Lai · Jian Shen · Weinan Zhang · Yong Yu -
2019 Poster: Lipschitz Generative Adversarial Nets »
Zhiming Zhou · Jiadong Liang · Yuxuan Song · Lantao Yu · Hongwei Wang · Weinan Zhang · Yong Yu · Zhihua Zhang -
2019 Poster: BayesNAS: A Bayesian Approach for Neural Architecture Search »
Hongpeng Zhou · Minghao Yang · Jun Wang · Wei Pan -
2019 Oral: BayesNAS: A Bayesian Approach for Neural Architecture Search »
Hongpeng Zhou · Minghao Yang · Jun Wang · Wei Pan -
2019 Oral: Lipschitz Generative Adversarial Nets »
Zhiming Zhou · Jiadong Liang · Yuxuan Song · Lantao Yu · Hongwei Wang · Weinan Zhang · Yong Yu · Zhihua Zhang -
2018 Poster: Path-Level Network Transformation for Efficient Architecture Search »
Han Cai · Jiacheng Yang · Weinan Zhang · Song Han · Yong Yu -
2018 Oral: Path-Level Network Transformation for Efficient Architecture Search »
Han Cai · Jiacheng Yang · Weinan Zhang · Song Han · Yong Yu