Timezone: »
Double machine learning provides n^{1/2}-consistent estimates of parameters of interest even when high-dimensional or nonparametric nuisance parameters are estimated at an n^{-1/4} rate. The key is to employ Neyman-orthogonal moment equations which are first-order insensitive to perturbations in the nuisance parameters. We show that the n^{-1/4} requirement can be improved to n^{-1/(2k+2)} by employing a k-th order notion of orthogonality that grants robustness to more complex or higher-dimensional nuisance parameters. In the partially linear regression setting popular in causal inference, we show that we can construct second-order orthogonal moments if and only if the treatment residual is not normally distributed. Our proof relies on Stein's lemma and may be of independent interest. We conclude by demonstrating the robustness benefits of an explicit doubly-orthogonal estimation procedure for treatment effect.
Author Information
Ilias Zadik (MIT)
Lester Mackey (Microsoft Research)
Vasilis Syrgkanis (Microsoft Research)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Orthogonal Machine Learning: Power and Limitations »
Fri. Jul 13th 03:00 -- 03:20 PM Room A5
More from the Same Authors
-
2020 : Contributed Talk: Incentivizing Bandit Exploration:Recommendations as Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 : SNoB: Social Norm Bias of “Fair” Algorithms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2021 : Are You Man Enough? Even Fair Algorithms Conform to Societal Norms »
Myra Cheng · Maria De-Arteaga · Lester Mackey · Adam Tauman Kalai -
2021 : DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions »
Amit Sharma · Vasilis Syrgkanis · cheng zhang · Emre Kiciman -
2022 : Adversarial Estimation of Riesz Representers »
Victor Chernozhukov · Whitney Newey · Rahul Singh · Vasilis Syrgkanis -
2022 Poster: RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests »
Victor Chernozhukov · Whitney Newey · Víctor Quintas-Martínez · Vasilis Syrgkanis -
2022 Oral: RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests »
Victor Chernozhukov · Whitney Newey · Víctor Quintas-Martínez · Vasilis Syrgkanis -
2022 Poster: Scalable Spike-and-Slab »
Niloy Biswas · Lester Mackey · Xiao-Li Meng -
2022 Spotlight: Scalable Spike-and-Slab »
Niloy Biswas · Lester Mackey · Xiao-Li Meng -
2021 : Lester Mackey: Online Learning with Optimism and Delay »
Lester Mackey -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2019 Workshop: Stein’s Method for Machine Learning and Statistics »
Francois-Xavier Briol · Lester Mackey · Chris Oates · Qiang Liu · Larry Goldstein · Larry Goldstein -
2019 Poster: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2019 Oral: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2019 Poster: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2019 Oral: Stein Point Markov Chain Monte Carlo »
Wilson Ye Chen · Alessandro Barp · Francois-Xavier Briol · Jackson Gorham · Mark Girolami · Lester Mackey · Chris Oates -
2018 Poster: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Poster: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Poster: Stein Points »
Wilson Ye Chen · Lester Mackey · Jackson Gorham · Francois-Xavier Briol · Chris J Oates -
2018 Oral: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Oral: Stein Points »
Wilson Ye Chen · Lester Mackey · Jackson Gorham · Francois-Xavier Briol · Chris J Oates -
2018 Oral: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis