Timezone: »
We develop a framework for augmenting online algorithms with a machine learned oracle to achieve competitive ratios that provably improve upon unconditional worst case lower bounds when the oracle has low error. Our approach treats the oracle as a complete black box, and is not dependent on its inner workings, or the exact distribution of its errors. We apply this framework to the traditional caching problem — creating an eviction strategy for a cache of size k. We demonstrate that naively following the oracle’s recommendations may lead to very poor performance, even when the average error is quite low. Instead we show how to modify the Marker algorithm to take into account the oracle’s predictions, and prove that this combined approach achieves a competitive ratio that both (i) decreases as the oracle’s error decreases, and (ii) is always capped by O(log k), which can be achieved without any oracle input. We complement our results with an empirical evaluation of our algorithm on real world datasets, and show that it performs well empirically even using simple off the shelf predictions.
Author Information
Thodoris Lykouris (Cornell University)
Sergei Vassilvitskii (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Competitive Caching with Machine Learned Advice »
Fri. Jul 13th 09:00 -- 09:20 AM Room K11
More from the Same Authors
-
2023 Tutorial: How to DP-fy ML: A Practical Tutorial to Machine Learning with Differential Privacy »
Sergei Vassilvitskii · Natalia Ponomareva · Zheng Xu -
2020 Workshop: Theoretical Foundations of Reinforcement Learning »
Emma Brunskill · Thodoris Lykouris · Max Simchowitz · Wen Sun · Mengdi Wang -
2019 Poster: Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy »
Kareem Amin · Alex Kulesza · andres munoz · Sergei Vassilvitskii -
2019 Oral: Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy »
Kareem Amin · Alex Kulesza · andres munoz · Sergei Vassilvitskii -
2019 Poster: A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes »
Jennifer Gillenwater · Alex Kulesza · Zelda Mariet · Sergei Vassilvitskii -
2019 Oral: A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes »
Jennifer Gillenwater · Alex Kulesza · Zelda Mariet · Sergei Vassilvitskii -
2017 Poster: Consistent k-Clustering »
Silvio Lattanzi · Sergei Vassilvitskii -
2017 Talk: Consistent k-Clustering »
Silvio Lattanzi · Sergei Vassilvitskii