Poster
Regret Minimization for Partially Observable Deep Reinforcement Learning
Peter Jin · EECS Kurt Keutzer · Sergey Levine

Thu Jul 12th 06:15 -- 09:00 PM @ Hall B #24

Deep reinforcement learning algorithms that estimate state and state-action value functions have been shown to be effective in a variety of challenging domains, including learning control strategies from raw image pixels. However, algorithms that estimate state and state-action value functions typically assume a fully observed state and must compensate for partial observations by using finite length observation histories or recurrent networks. In this work, we propose a new deep reinforcement learning algorithm based on counterfactual regret minimization that iteratively updates an approximation to an advantage-like function and is robust to partially observed state. We demonstrate that this new algorithm can substantially outperform strong baseline methods on several partially observed reinforcement learning tasks: learning first-person 3D navigation in Doom and Minecraft, and acting in the presence of partially observed objects in Doom and Pong.

Author Information

Peter Jin (UC Berkeley)
EECS Kurt Keutzer (EECS, UC Berkeley)
Sergey Levine (Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors