Timezone: »
Planning problems are among the most important and well-studied problems in artificial intelligence. They are most typically solved by tree search algorithms that simulate ahead into the future, evaluate future states, and back-up those evaluations to the root of a search tree. Among these algorithms, Monte-Carlo tree search (MCTS) is one of the most general, powerful and widely used. A typical implementation of MCTS uses cleverly designed rules, optimised to the particular characteristics of the domain. These rules control where the simulation traverses, what to evaluate in the states that are reached, and how to back-up those evaluations. In this paper we instead learn where, what and how to search. Our architecture, which we call an MCTSnet, incorporates simulation-based search inside a neural network, by expanding, evaluating and backing-up a vector embedding. The parameters of the network are trained end-to-end using gradient-based optimisation. When applied to small searches in the well-known planning problem Sokoban, the learned search algorithm significantly outperformed MCTS baselines.
Author Information
Arthur Guez (Google DeepMind)
Theo Weber (DeepMind)
Ioannis Antonoglou (Deepmind)
Karen Simonyan (DeepMind)
Oriol Vinyals (DeepMind)
Oriol Vinyals is a Research Scientist at Google. He works in deep learning with the Google Brain team. Oriol holds a Ph.D. in EECS from University of California, Berkeley, and a Masters degree from University of California, San Diego. He is a recipient of the 2011 Microsoft Research PhD Fellowship. He was an early adopter of the new deep learning wave at Berkeley, and in his thesis he focused on non-convex optimization and recurrent neural networks. At Google Brain he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, language, and vision.
Daan Wierstra (Google DeepMind)
Remi Munos (DeepMind)
David Silver (Google DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Learning to search with MCTSnets »
Wed Jul 11th 09:20 -- 09:30 AM Room Victoria
More from the Same Authors
-
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Stefan Bauer · Jane Wang · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer -
2020 Poster: Off-Policy Actor-Critic with Shared Experience Replay »
Simon Schmitt · Matteo Hessel · Karen Simonyan -
2020 Poster: Monte-Carlo Tree Search as Regularized Policy Optimization »
Jean-Bastien Grill · Florent Altché · Yunhao Tang · Thomas Hubert · Michal Valko · Ioannis Antonoglou · Remi Munos -
2020 Poster: What Can Learned Intrinsic Rewards Capture? »
Zeyu Zheng · Junhyuk Oh · Matteo Hessel · Zhongwen Xu · Manuel Kroiss · Hado van Hasselt · David Silver · Satinder Singh -
2019 Poster: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Oral: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Poster: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2018 Poster: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Poster: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · koray kavukcuoglu -
2018 Poster: Parallel WaveNet: Fast High-Fidelity Speech Synthesis »
Aäron van den Oord · Yazhe Li · Igor Babuschkin · Karen Simonyan · Oriol Vinyals · koray kavukcuoglu · George van den Driessche · Edward Lockhart · Luis C Cobo · Florian Stimberg · Norman Casagrande · Dominik Grewe · Seb Noury · Sander Dieleman · Erich Elsen · Nal Kalchbrenner · Heiga Zen · Alex Graves · Helen King · Tom Walters · Dan Belov · Demis Hassabis -
2018 Poster: Efficient Neural Audio Synthesis »
Nal Kalchbrenner · Erich Elsen · Karen Simonyan · Seb Noury · Norman Casagrande · Edward Lockhart · Florian Stimberg · Aäron van den Oord · Sander Dieleman · koray kavukcuoglu -
2018 Poster: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Oral: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: Parallel WaveNet: Fast High-Fidelity Speech Synthesis »
Aäron van den Oord · Yazhe Li · Igor Babuschkin · Karen Simonyan · Oriol Vinyals · koray kavukcuoglu · George van den Driessche · Edward Lockhart · Luis C Cobo · Florian Stimberg · Norman Casagrande · Dominik Grewe · Seb Noury · Sander Dieleman · Erich Elsen · Nal Kalchbrenner · Heiga Zen · Alex Graves · Helen King · Tom Walters · Dan Belov · Demis Hassabis -
2018 Oral: Efficient Neural Audio Synthesis »
Nal Kalchbrenner · Erich Elsen · Karen Simonyan · Seb Noury · Norman Casagrande · Edward Lockhart · Florian Stimberg · Aäron van den Oord · Sander Dieleman · koray kavukcuoglu -
2018 Oral: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · koray kavukcuoglu -
2018 Poster: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Oral: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Poster: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Poster: Learning Implicit Generative Models with the Method of Learned Moments »
Suman Ravuri · Shakir Mohamed · Mihaela Rosca · Oriol Vinyals -
2018 Poster: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Oral: Learning Implicit Generative Models with the Method of Learned Moments »
Suman Ravuri · Shakir Mohamed · Mihaela Rosca · Oriol Vinyals -
2018 Oral: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2017 Workshop: Video Games and Machine Learning »
Gabriel Synnaeve · Julian Togelius · Tom Schaul · Oriol Vinyals · Nicolas Usunier -
2017 Poster: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Poster: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · koray kavukcuoglu -
2017 Poster: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Poster: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Poster: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Talk: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Talk: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Talk: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · koray kavukcuoglu -
2017 Talk: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Talk: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Poster: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Poster: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi -
2017 Talk: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi -
2017 Poster: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · koray kavukcuoglu -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · koray kavukcuoglu -
2017 Poster: Understanding Synthetic Gradients and Decoupled Neural Interfaces »
Wojciech Czarnecki · Grzegorz Świrszcz · Max Jaderberg · Simon Osindero · Oriol Vinyals · koray kavukcuoglu -
2017 Poster: Video Pixel Networks »
Nal Kalchbrenner · Karen Simonyan · Aäron van den Oord · Ivo Danihelka · Oriol Vinyals · Alex Graves · koray kavukcuoglu -
2017 Poster: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos -
2017 Talk: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · koray kavukcuoglu -
2017 Talk: Video Pixel Networks »
Nal Kalchbrenner · Karen Simonyan · Aäron van den Oord · Ivo Danihelka · Oriol Vinyals · Alex Graves · koray kavukcuoglu -
2017 Talk: Understanding Synthetic Gradients and Decoupled Neural Interfaces »
Wojciech Czarnecki · Grzegorz Świrszcz · Max Jaderberg · Simon Osindero · Oriol Vinyals · koray kavukcuoglu -
2017 Talk: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos -
2017 Talk: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · koray kavukcuoglu -
2017 Tutorial: Sequence-To-Sequence Modeling with Neural Networks »
Oriol Vinyals · Navdeep Jaitly