Timezone: »
Understanding and interacting with everyday physical scenes requires rich knowledge about the structure of the world, represented either implicitly in a value or policy function, or explicitly in a transition model. Here we introduce a new class of learnable models--based on graph networks--which implement an inductive bias for object- and relation-centric representations of complex, dynamical systems. Our results show that as a forward model, our approach supports accurate predictions from real and simulated data, and surprisingly strong and efficient generalization, across eight distinct physical systems which we varied parametrically and structurally. We also found that our inference model can perform system identification. Our models are also differentiable, and support online planning via gradient-based trajectory optimization, as well as offline policy optimization. Our framework offers new opportunities for harnessing and exploiting rich knowledge about the world, and takes a key step toward building machines with more human-like representations of the world.
Author Information
Alvaro Sanchez-Gonzalez (DeepMind)
Nicolas Heess (DeepMind)
Jost Springenberg (DeepMind)
Josh Merel (DeepMind)
Martin Riedmiller (DeepMind)
Raia Hadsell (DeepMind)
Raia Hadsell, a senior research scientist at DeepMind, has worked on deep learning and robotics problems for over 10 years. Her early research developed the notion of manifold learning using Siamese networks, which has been used extensively for invariant feature learning. After completing a PhD with Yann LeCun, which featured a self-supervised deep learning vision system for a mobile robot, her research continued at Carnegie Mellon’s Robotics Institute and SRI International, and in early 2014 she joined DeepMind in London to study artificial general intelligence. Her current research focuses on the challenge of continual learning for AI agents and robotic systems. While deep RL algorithms are capable of attaining superhuman performance on single tasks, they cannot transfer that performance to additional tasks, especially if experienced sequentially. She has proposed neural approaches such as policy distillation, progressive nets, and elastic weight consolidation to solve the problem of catastrophic forgetting and improve transfer learning.
Peter Battaglia (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Graph Networks as Learnable Physics Engines for Inference and Control »
Wed. Jul 11th 09:50 -- 10:00 AM Room Victoria
More from the Same Authors
-
2021 : Is Bang-Bang Control All You Need? »
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus -
2022 : MultiScale MeshGraphNets »
Meire Fortunato · Tobias Pfaff · Peter Wirnsberger · Alexander Pritzel · Peter Battaglia -
2023 : Diffusion Generative Inverse Design »
Marin Vlastelica · Tatiana Lopez-Guevara · Kelsey Allen · Peter Battaglia · Arnaud Doucet · Kimberly Stachenfeld -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Poster: Constraint-based graph network simulator »
Yulia Rubanova · Alvaro Sanchez-Gonzalez · Tobias Pfaff · Peter Battaglia -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: Constraint-based graph network simulator »
Yulia Rubanova · Alvaro Sanchez-Gonzalez · Tobias Pfaff · Peter Battaglia -
2022 Poster: The CLRS Algorithmic Reasoning Benchmark »
Petar Veličković · Adrià Puigdomenech Badia · David Budden · Razvan Pascanu · Andrea Banino · Misha Dashevskiy · Raia Hadsell · Charles Blundell -
2022 Spotlight: The CLRS Algorithmic Reasoning Benchmark »
Petar Veličković · Adrià Puigdomenech Badia · David Budden · Razvan Pascanu · Andrea Banino · Misha Dashevskiy · Raia Hadsell · Charles Blundell -
2022 Poster: Hindering Adversarial Attacks with Implicit Neural Representations »
Andrei A Rusu · Dan Andrei Calian · Sven Gowal · Raia Hadsell -
2022 Poster: Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-sum Games »
Siqi Liu · Marc Lanctot · Luke Marris · Nicolas Heess -
2022 Spotlight: Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-sum Games »
Siqi Liu · Marc Lanctot · Luke Marris · Nicolas Heess -
2022 Spotlight: Hindering Adversarial Attacks with Implicit Neural Representations »
Andrei A Rusu · Dan Andrei Calian · Sven Gowal · Raia Hadsell -
2021 : RL + Robotics Panel »
George Konidaris · Jan Peters · Martin Riedmiller · Angela Schoellig · Rose Yu · Rupam Mahmood -
2021 Poster: Data-efficient Hindsight Off-policy Option Learning »
Markus Wulfmeier · Dushyant Rao · Roland Hafner · Thomas Lampe · Abbas Abdolmaleki · Tim Hertweck · Michael Neunert · Dhruva Tirumala Bukkapatnam · Noah Siegel · Nicolas Heess · Martin Riedmiller -
2021 Spotlight: Data-efficient Hindsight Off-policy Option Learning »
Markus Wulfmeier · Dushyant Rao · Roland Hafner · Thomas Lampe · Abbas Abdolmaleki · Tim Hertweck · Michael Neunert · Dhruva Tirumala Bukkapatnam · Noah Siegel · Nicolas Heess · Martin Riedmiller -
2021 Poster: Generating images with sparse representations »
Charlie Nash · Jacob Menick · Sander Dieleman · Peter Battaglia -
2021 Oral: Generating images with sparse representations »
Charlie Nash · Jacob Menick · Sander Dieleman · Peter Battaglia -
2021 Poster: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2020 : QA for invited talk 6 Heess »
Nicolas Heess -
2020 : Invited talk 6 Heess »
Nicolas Heess -
2020 : Invited Talk: Peter Battaglia (Q&A) »
Peter Battaglia -
2020 : Invited Talk: Peter Battaglia »
Peter Battaglia -
2020 Poster: CoMic: Complementary Task Learning & Mimicry for Reusable Skills »
Leonard Hasenclever · Fabio Pardo · Raia Hadsell · Nicolas Heess · Josh Merel -
2020 Poster: PolyGen: An Autoregressive Generative Model of 3D Meshes »
Charlie Nash · Yaroslav Ganin · S. M. Ali Eslami · Peter Battaglia -
2020 Poster: Stabilizing Transformers for Reinforcement Learning »
Emilio Parisotto · Francis Song · Jack Rae · Razvan Pascanu · Caglar Gulcehre · Siddhant Jayakumar · Max Jaderberg · Raphael Lopez Kaufman · Aidan Clark · Seb Noury · Matthew Botvinick · Nicolas Heess · Raia Hadsell -
2020 Poster: A distributional view on multi-objective policy optimization »
Abbas Abdolmaleki · Sandy Huang · Leonard Hasenclever · Michael Neunert · Francis Song · Martina Zambelli · Murilo Martins · Nicolas Heess · Raia Hadsell · Martin Riedmiller -
2020 Poster: Learning to Simulate Complex Physics with Graph Networks »
Alvaro Sanchez-Gonzalez · Jonathan Godwin · Tobias Pfaff · Rex (Zhitao) Ying · Jure Leskovec · Peter Battaglia -
2019 : Nicolas Heess: TBD »
Nicolas Heess -
2019 : Panel Discussion »
Yoshua Bengio · Andrew Ng · Raia Hadsell · John Platt · Claire Monteleoni · Jennifer Chayes -
2019 Poster: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Poster: Structured agents for physical construction »
Victor Bapst · Alvaro Sanchez-Gonzalez · Carl Doersch · Kimberly Stachenfeld · Pushmeet Kohli · Peter Battaglia · Jessica Hamrick -
2019 Oral: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Oral: Structured agents for physical construction »
Victor Bapst · Alvaro Sanchez-Gonzalez · Carl Doersch · Kimberly Stachenfeld · Pushmeet Kohli · Peter Battaglia · Jessica Hamrick -
2019 Poster: Composing Entropic Policies using Divergence Correction »
Jonathan Hunt · Andre Barreto · Timothy Lillicrap · Nicolas Heess -
2019 Oral: Composing Entropic Policies using Divergence Correction »
Jonathan Hunt · Andre Barreto · Timothy Lillicrap · Nicolas Heess -
2018 Poster: Progress & Compress: A scalable framework for continual learning »
Jonathan Richard Schwarz · Wojciech Czarnecki · Jelena Luketina · Agnieszka Grabska-Barwinska · Yee Teh · Razvan Pascanu · Raia Hadsell -
2018 Poster: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Oral: Progress & Compress: A scalable framework for continual learning »
Jonathan Richard Schwarz · Wojciech Czarnecki · Jelena Luketina · Agnieszka Grabska-Barwinska · Yee Teh · Razvan Pascanu · Raia Hadsell -
2018 Oral: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Poster: Learning by Playing - Solving Sparse Reward Tasks from Scratch »
Martin Riedmiller · Roland Hafner · Thomas Lampe · Michael Neunert · Jonas Degrave · Tom Van de Wiele · Vlad Mnih · Nicolas Heess · Jost Springenberg -
2018 Oral: Learning by Playing - Solving Sparse Reward Tasks from Scratch »
Martin Riedmiller · Roland Hafner · Thomas Lampe · Michael Neunert · Jonas Degrave · Tom Van de Wiele · Vlad Mnih · Nicolas Heess · Jost Springenberg -
2017 Poster: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Talk: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Invited Talk: Towards Reinforcement Learning in the Real World »
Raia Hadsell